Spin-controlled topological phase transition in non-Euclidean space

Zhuochen Du, Jinze Gao, Qiuchen Yan, Cuicui Lu, Xiaoyong Hu, Qihuang Gong

PDF(1785 KB)
PDF(1785 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (1) : 7. DOI: 10.1007/s12200-024-00110-w
RESEARCH ARTICLE

Spin-controlled topological phase transition in non-Euclidean space

Author information +
History +

Abstract

Modulation of topological phase transition has been pursued by researchers in both condensed matter and optics research fields, and has been realized in Euclidean systems, such as topological photonic crystals, topological metamaterials, and coupled resonator arrays. However, the spin-controlled topological phase transition in non-Euclidean space has not yet been explored. Here, we propose a non-Euclidean configuration based on Möbius rings, and we demonstrate the spin-controlled transition between the topological edge state and the bulk state. The Möbius ring, which is designed to have an 8π period, has a square cross section at the twist beginning and the length/width evolves adiabatically along the loop, accompanied by conversion from transverse electric to transverse magnetic modes resulting from the spin-locked effect. The 8π period Möbius rings are used to construct Su–Schrieffer–Heeger configuration, and the configuration can support the topological edge states excited by circularly polarized light, and meanwhile a transition from the topological edge state to the bulk state can be realized by controlling circular polarization. In addition, the spin-controlled topological phase transition in non-Euclidean space is feasible for both Hermitian and non-Hermitian cases in 2D systems. This work provides a new degree of polarization to control topological photonic states based on the spin of Möbius rings and opens a way to tune the topological phase in non-Euclidean space.

Graphical abstract

Keywords

Topological phase transition / Non-Euclidean space / Möbius ring / Spin-locked effect

Cite this article

Download citation ▾
Zhuochen Du, Jinze Gao, Qiuchen Yan, Cuicui Lu, Xiaoyong Hu, Qihuang Gong. Spin-controlled topological phase transition in non-Euclidean space. Front. Optoelectron., 2024, 17(1): 7 https://doi.org/10.1007/s12200-024-00110-w

References

[1]
Ozawa, T., Price, H.M., Amo, A., Goldman, N., Hafezi, M., Lu, L., Rechtsman, M.C., Schuster, D., Simon, J., Zilberberg, O., Carusotto, I.: Topological photonics. Rev. Mod. Phys. 91(1), 015006 (2019)
CrossRef Google scholar
[2]
Khanikaev, A.B., Shvets, G.: Two-dimensional topological photonics. Nat. Photonics 11(12), 763–773 (2017)
CrossRef Google scholar
[3]
Smirnova, D., Leykam, D., Chong, Y.D., Kivshar, Y.: Nonlinear topological photonics. Appl. Phys. Rev. 7(2), 021306 (2020)
CrossRef Google scholar
[4]
Yan, Q.C., Hu, X.Y., Fu, Y.L., Lu, C.C., Fan, C.X., Liu, Q.H., Feng, X.L., Sun, Q., Gong, Q.H.: Quantum topological photonics. Adv. Opt. Mater. 9(15), 2001739 (2021)
CrossRef Google scholar
[5]
Ota, Y., Takata, K., Ozawa, T., Amo, A., Jia, Z., Kante, B., Notomi, M., Arakawa, Y., Iwamoto, S.: Active topological photonics. Nanophotonics 9(3), 547–567 (2020)
CrossRef Google scholar
[6]
Kim, M., Jacob, Z., Rho, J.: Recent advances in 2D, 3D and higher-order topological photonics. Light Sci. Appl. 9, 130 (2020)
CrossRef Google scholar
[7]
Lustig, E., Segev, M.: Topological photonics in synthetic dimensions. Adv. Opt. Photonics 13(2), 426 (2021)
CrossRef Google scholar
[8]
Song, Y.L., Monceaux, Y., Bittner, S., Chao, K., Reynoso de la Cruz, H.M., Lafargue, C., Decanini, D., Dietz, B., Zyss, J., Grigis, A., Checoury, X., Lebental, M.: Möbius strip microlasers: a testbed for non-Euclidean photonics. Phys. Rev. Lett. 127(20), 203901 (2021)
CrossRef Google scholar
[9]
Garcia-Etxarri, A.: Optical polarization Möbius strips on all-dielectric optical scatterers. ACS Photonics 4(5), 1159–1164 (2017)
CrossRef Google scholar
[10]
Herges, R.: Topology in chemistry: designing Möbius molecules. Chem. Rev. 106(12), 4820–4842 (2006)
CrossRef Google scholar
[11]
Starostin, E.L., Van der Heijden, G.H.M.: The shape of a Möbius strip. Nat. Mater. 6(8), 563–567 (2007)
CrossRef Google scholar
[12]
Flouris, K., Jimenez, M.M., Herrmann, H.J.: Curvature-induced quantum spin-Hall effect on a Möbius strip. Phys. Rev. B 105(23), 235122 (2022)
CrossRef Google scholar
[13]
Xu, X.B., Shi, L., Guo, G.C., Dong, C.H., Zou, C.L.: “Möbius” microring resonator. Appl. Phys. Lett. 114(10), 101106 (2019)
CrossRef Google scholar
[14]
Kreismann, J., Hentschel, M.: The optical Möbius strip cavity: tailoring geometric phases and far fields. Europhys. Lett. 121(2), 24001 (2018)
CrossRef Google scholar
[15]
Hamilton, J.K., Hooper, I.R., Lawrence, C.R.: Absorption modes of Möbius strip resonators. Sci. Rep. 11(1), 1–7 (2021)
CrossRef Google scholar
[16]
Zeng, Y., Wang, Z.Y., Wu, Y., Lu, L.S., Wang, Y.X., Shi, S.J., Qiu, Q.: Plasmonic microcavity formed by the Möbius strip. Chin. Phys. B 26(3), 037303 (2017)
CrossRef Google scholar
[17]
Nie, Z.Z., Zuo, B., Wang, M., Huang, S., Chen, X.M., Liu, Z.Y., Yang, H.: Light-driven continuous rotating Möbius strip actuators. Nat. Commun. 12, 2334 (2021)
CrossRef Google scholar
[18]
Bogaerts, W., De Heyn, P., Van Vaerenbergh, T., De Vos, K., Kumar Selvaraja, S., Claes, T., Dumon, P., Bienstman, P., Van Thourhout, D., Baets, R.: Silicon microring resonators. Laser Photonics Rev. 6(1), 47–73 (2012)
CrossRef Google scholar
[19]
Parto, M., Wittek, S., Hodaei, H., Harari, G., Bandres, M.A., Ren, J., Rechtsman, M.C., Segev, M., Christodoulides, D.N., Khajavikhan, M.: Edge-mode lasing in 1D topological active arrays. Phys. Rev. Lett. 120(11), 113901 (2018)
CrossRef Google scholar
[20]
Takata, K., Notomi, M.: Photonic topological insulating phase induced solely by gain and loss. Phys. Rev. Lett. 121(21), 213902 (2018)
CrossRef Google scholar
[21]
Yan, Q.C., Cao, E., Sun, Q., Ao, Y.T., Hu, X.Y., Shi, X., Gong, Q.H., Misawa, H.: Near-field imaging and time-domain dynamics of photonic topological edge states in plasmonic nanochains. Nano Lett. 21(21), 9270–9278 (2021)
CrossRef Google scholar
[22]
Ao, Y.T., Hu, X.Y., You, Y.L., Lu, C.C., Fu, Y.L., Wang, X.Y., Gong, Q.H.: Topological phase transition in the non-Hermitian coupled resonator array. Phys. Rev. Lett. 125(1), 013902 (2020)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s) 2024
AI Summary AI Mindmap
PDF(1785 KB)

Accesses

Citations

Detail

Sections
Recommended

/