Spin-controlled topological phase transition in non-Euclidean space
Zhuochen Du, Jinze Gao, Qiuchen Yan, Cuicui Lu, Xiaoyong Hu, Qihuang Gong
Spin-controlled topological phase transition in non-Euclidean space
Modulation of topological phase transition has been pursued by researchers in both condensed matter and optics research fields, and has been realized in Euclidean systems, such as topological photonic crystals, topological metamaterials, and coupled resonator arrays. However, the spin-controlled topological phase transition in non-Euclidean space has not yet been explored. Here, we propose a non-Euclidean configuration based on Möbius rings, and we demonstrate the spin-controlled transition between the topological edge state and the bulk state. The Möbius ring, which is designed to have an 8π period, has a square cross section at the twist beginning and the length/width evolves adiabatically along the loop, accompanied by conversion from transverse electric to transverse magnetic modes resulting from the spin-locked effect. The 8π period Möbius rings are used to construct Su–Schrieffer–Heeger configuration, and the configuration can support the topological edge states excited by circularly polarized light, and meanwhile a transition from the topological edge state to the bulk state can be realized by controlling circular polarization. In addition, the spin-controlled topological phase transition in non-Euclidean space is feasible for both Hermitian and non-Hermitian cases in 2D systems. This work provides a new degree of polarization to control topological photonic states based on the spin of Möbius rings and opens a way to tune the topological phase in non-Euclidean space.
Topological phase transition / Non-Euclidean space / Möbius ring / Spin-locked effect
[1] |
Ozawa, T., Price, H.M., Amo, A., Goldman, N., Hafezi, M., Lu, L., Rechtsman, M.C., Schuster, D., Simon, J., Zilberberg, O., Carusotto, I.: Topological photonics. Rev. Mod. Phys. 91(1), 015006 (2019)
CrossRef
Google scholar
|
[2] |
Khanikaev, A.B., Shvets, G.: Two-dimensional topological photonics. Nat. Photonics 11(12), 763–773 (2017)
CrossRef
Google scholar
|
[3] |
Smirnova, D., Leykam, D., Chong, Y.D., Kivshar, Y.: Nonlinear topological photonics. Appl. Phys. Rev. 7(2), 021306 (2020)
CrossRef
Google scholar
|
[4] |
Yan, Q.C., Hu, X.Y., Fu, Y.L., Lu, C.C., Fan, C.X., Liu, Q.H., Feng, X.L., Sun, Q., Gong, Q.H.: Quantum topological photonics. Adv. Opt. Mater. 9(15), 2001739 (2021)
CrossRef
Google scholar
|
[5] |
Ota, Y., Takata, K., Ozawa, T., Amo, A., Jia, Z., Kante, B., Notomi, M., Arakawa, Y., Iwamoto, S.: Active topological photonics. Nanophotonics 9(3), 547–567 (2020)
CrossRef
Google scholar
|
[6] |
Kim, M., Jacob, Z., Rho, J.: Recent advances in 2D, 3D and higher-order topological photonics. Light Sci. Appl. 9, 130 (2020)
CrossRef
Google scholar
|
[7] |
Lustig, E., Segev, M.: Topological photonics in synthetic dimensions. Adv. Opt. Photonics 13(2), 426 (2021)
CrossRef
Google scholar
|
[8] |
Song, Y.L., Monceaux, Y., Bittner, S., Chao, K., Reynoso de la Cruz, H.M., Lafargue, C., Decanini, D., Dietz, B., Zyss, J., Grigis, A., Checoury, X., Lebental, M.: Möbius strip microlasers: a testbed for non-Euclidean photonics. Phys. Rev. Lett. 127(20), 203901 (2021)
CrossRef
Google scholar
|
[9] |
Garcia-Etxarri, A.: Optical polarization Möbius strips on all-dielectric optical scatterers. ACS Photonics 4(5), 1159–1164 (2017)
CrossRef
Google scholar
|
[10] |
Herges, R.: Topology in chemistry: designing Möbius molecules. Chem. Rev. 106(12), 4820–4842 (2006)
CrossRef
Google scholar
|
[11] |
Starostin, E.L., Van der Heijden, G.H.M.: The shape of a Möbius strip. Nat. Mater. 6(8), 563–567 (2007)
CrossRef
Google scholar
|
[12] |
Flouris, K., Jimenez, M.M., Herrmann, H.J.: Curvature-induced quantum spin-Hall effect on a Möbius strip. Phys. Rev. B 105(23), 235122 (2022)
CrossRef
Google scholar
|
[13] |
Xu, X.B., Shi, L., Guo, G.C., Dong, C.H., Zou, C.L.: “Möbius” microring resonator. Appl. Phys. Lett. 114(10), 101106 (2019)
CrossRef
Google scholar
|
[14] |
Kreismann, J., Hentschel, M.: The optical Möbius strip cavity: tailoring geometric phases and far fields. Europhys. Lett. 121(2), 24001 (2018)
CrossRef
Google scholar
|
[15] |
Hamilton, J.K., Hooper, I.R., Lawrence, C.R.: Absorption modes of Möbius strip resonators. Sci. Rep. 11(1), 1–7 (2021)
CrossRef
Google scholar
|
[16] |
Zeng, Y., Wang, Z.Y., Wu, Y., Lu, L.S., Wang, Y.X., Shi, S.J., Qiu, Q.: Plasmonic microcavity formed by the Möbius strip. Chin. Phys. B 26(3), 037303 (2017)
CrossRef
Google scholar
|
[17] |
Nie, Z.Z., Zuo, B., Wang, M., Huang, S., Chen, X.M., Liu, Z.Y., Yang, H.: Light-driven continuous rotating Möbius strip actuators. Nat. Commun. 12, 2334 (2021)
CrossRef
Google scholar
|
[18] |
Bogaerts, W., De Heyn, P., Van Vaerenbergh, T., De Vos, K., Kumar Selvaraja, S., Claes, T., Dumon, P., Bienstman, P., Van Thourhout, D., Baets, R.: Silicon microring resonators. Laser Photonics Rev. 6(1), 47–73 (2012)
CrossRef
Google scholar
|
[19] |
Parto, M., Wittek, S., Hodaei, H., Harari, G., Bandres, M.A., Ren, J., Rechtsman, M.C., Segev, M., Christodoulides, D.N., Khajavikhan, M.: Edge-mode lasing in 1D topological active arrays. Phys. Rev. Lett. 120(11), 113901 (2018)
CrossRef
Google scholar
|
[20] |
Takata, K., Notomi, M.: Photonic topological insulating phase induced solely by gain and loss. Phys. Rev. Lett. 121(21), 213902 (2018)
CrossRef
Google scholar
|
[21] |
Yan, Q.C., Cao, E., Sun, Q., Ao, Y.T., Hu, X.Y., Shi, X., Gong, Q.H., Misawa, H.: Near-field imaging and time-domain dynamics of photonic topological edge states in plasmonic nanochains. Nano Lett. 21(21), 9270–9278 (2021)
CrossRef
Google scholar
|
[22] |
Ao, Y.T., Hu, X.Y., You, Y.L., Lu, C.C., Fu, Y.L., Wang, X.Y., Gong, Q.H.: Topological phase transition in the non-Hermitian coupled resonator array. Phys. Rev. Lett. 125(1), 013902 (2020)
CrossRef
Google scholar
|
/
〈 | 〉 |