White light emission in 0D halide perovskite [(CH3)3S]2SnCl6·H2O crystals through variation of doping ns2 ions
Received date: 23 Nov 2023
Accepted date: 09 Jan 2024
Published date: 15 Mar 2024
Copyright
With the rapid development of white LEDs, the research of new and efficient white light emitting materials has attracted increasing attention. Zero dimensional (0D) organic–inorganic hybrid metal halide perovskites with superior luminescent property are promising candidates for LED application, due to their abundant and tailorable structure. Herein, [(CH3)3S]2SnCl6·H2O is synthesized as a host for dopant ions Bi3+ and Sb3+. The Sb3+ doped, or Bi3+/Sb3+ co-doped, [(CH3)3S]2SnCl6·H2O has a tunable optical emission spectrum by means of varying dopant ratio and excitation wavelength. As a result, we can achieve single-phase materials suitable for emission ranging from cold white light to warm white light. The intrinsic mechanism is examined in this work, to clarify the dopant effect on the optical properties. The high stability of title crystalline material, against water, oxygen and heat, makes it promising for further application.
Key words: 0D; Metal halide; White light; Perovskite; Ions doping; Excitation dependent
Yitong Lin , Yu Zhong , Yangpeng Lin , Jiawei Lin , Lei Pang , Zhilong Zhang , Yi Zhao , Xiao-Ying Huang , Ke-Zhao Du . White light emission in 0D halide perovskite [(CH3)3S]2SnCl6·H2O crystals through variation of doping ns2 ions[J]. Frontiers of Optoelectronics, 2024 , 17(1) : 6 . DOI: 10.1007/s12200-024-00109-3
1 |
Shang, J., Cong, C., Wang, Z., Peimyoo, N., Wu, L., Zou, C., Chen, Y., Chin, X.Y., Wang, J., Soci, C., Huang, W., Yu, T.: Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers. Nat. Commun. 8(1), 543 (2017)
|
2 |
Kitai, A.: Materials for solid state lighting and displays. John Wiley & Sons, Ltd (2016)
|
3 |
Humphreys, C.J.: Solid-state lighting. MRS Bull. 33(4), 459–470 (2008)
|
4 |
Tsao, J.Y., Saunders, H.D., Creighton, J.R., Coltrin, M.E., Simmons, J.A.: Solid-state lighting: an energy-economics perspective. J. Phys. D Appl. Phys. 43(35), 354001 (2010)
|
5 |
Guner, T., Demir, M.: A review on halide perovskites as color conversion layers in white light emitting diode applications. Phys. Status Solidi A Appl. Mater. Sci. 215(13), 1800120 (2018)
|
6 |
Sun, N., Gao, W., Dong, H., Liu, Y., Liu, X., Wu, Z., Song, L., Ran, C., Chen, Y.: Architecture of p-i-n Sn-based perovskite solar cells: characteristics, advances, and perspectives. ACS Energy Lett. 6(8), 2863–2875 (2021)
|
7 |
Lim, E.L., Hagfeldt, A., Bi, D.: Toward highly efficient and stable Sn2+ and mixed Pb2+/Sn2+ based halide perovskite solar cells through device engineering. Energy Environ. Sci. 14(6), 3256–3300 (2021)
|
8 |
Ke, W., Stoumpos, C.C., Kanatzidis, M.G.: “Unleaded” perovskites: status quo and future prospects of tin-based perovskite solar cells. Adv. Mater. 31(47), e1803230 (2019)
|
9 |
Zhang, K., Zhu, N., Zhang, M., Wang, L., Xing, J.: Opportunities and challenges in perovskite LED commercialization. J. Mater. Chem. C Mater. Opt. Electron. Devices 9(11), 3795–3799 (2021)
|
10 |
Pacchioni, G.: Highly efficient perovskite LEDs. Nat. Rev. Mater. 6(2), 108 (2021)
|
11 |
Kim, J.S., Heo, J.M., Park, G.S., Woo, S.J., Cho, C., Yun, H.J., Kim, D.H., Park, J., Lee, S.C., Park, S.H., Yoon, E., Greenham, N.C., Lee, T.W.: Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611(7937), 688–694 (2022)
|
12 |
Lin, Y.P., Hu, S., Xia, B., Fan, K.Q., Gong, L.K., Kong, J.T., Huang, X.Y., Xiao, Z., Du, K.Z.: Material design and optoelectronic properties of three-dimensional quadruple perovskite halides. J. Phys. Chem. Lett. 10(17), 5219–5225 (2019)
|
13 |
Lin, Y.P., Xia, B., Hu, S., Zhong, Y., Huang, Y.E., Zhang, Z.Z., Wu, N., Wu, Y.W., Wu, X.H., Huang, X.Y., Xiao, Z., Du, K.Z.: Reversible release and fixation of bromine in vacancy-ordered bromide perovskites. Energy Environ. Mater. 3(4), 535–540 (2020)
|
14 |
Lin, Y.P., Xia, B., Hu, S., Liu, Z., Huang, X.Y., Xiao, Z., Du, K.Z.: Vacancy-ordered chloride perovskites for reversible release–storage of chlorine. J. Mater. Sci. 57(39), 18266–18276 (2022)
|
15 |
Wu, Y.N., Zhu, L.L., Zhao, Y., Xu, S.Y., Huang, P.W., Chen, B.C., Huang, Z.Y., Huang, X.Y., Chen, J., Du, K.Z.: Mussel-inspired two-dimensional halide perovskite facilitated dopamine polymerization and self-adhesive photoelectric coating. Inorg. Chem. 62(2), 1062–1068 (2023)
|
16 |
Zhao, Y., Zhong, H.Y., Li, L., Lin, W.L., Huang, Y.E., Su, B.Y., Wu, X.H., Huang, X.Y., Du, K.Z.: Crystalline intermarriage of hybrid organic–inorganic halide perovskite and epoxide: enhanced stability and modified optical properties. ACS Appl. Energy Mater. 4(12), 13550–13555 (2021)
|
17 |
Chen, Y., Gao, C., Yang, T., Li, W., Xu, H., Sun, Z.: Research advances of ferroelectric semiconductors of 2D hybrid perovskites toward photoelectronic applications. Chin. J. Struct. Chem. 41, 2204001–2204011 (2022)
|
18 |
Jing, Y., Liu, Y., Li, M., Xia, Z.: Photoluminescence of singlet/triplet self-trapped excitons in Sb3+-based metal halides. Adv. Opt. Mater. 9(8), 2002213 (2021)
|
19 |
McCall, K.M., Morad, V., Benin, B.M., Kovalenko, M.V.: Efficient lone-pair-driven luminescence: structure-property relationships in emissive 5s2 metal halides. ACS Mater. Lett. 2(9), 1218–1232 (2020)
|
20 |
Liu, S., Yang, B., Chen, J., Zheng, D., Tang, Z., Deng, W., Han, K.: Colloidal synthesis and tunable multicolor emission of vacancy-ordered Cs2HfCl6 perovskite nanocrystals. Laser Photonics Rev. 16(2), 2100439 (2022)
|
21 |
Liu, S., Yang, B., Chen, J., Wei, D., Zheng, D., Kong, Q., Deng, W., Han, K.: Efficient thermally activated delayed fluorescence from all-inorganic cesium zirconium halide perovskite nanocrystals. Angew. Chem. Int. Ed. Engl. 59(49), 21925–21929 (2020)
|
22 |
Abfalterer, A., Shamsi, J., Kubicki, D., Savory, C., Xiao, J., Divitini, G., Li, W., Macpherson, S., Gałkowski, K., MacManus-Driscoll, J., Scanlon, D., Stranks, S.: Colloidal synthesis and optical properties of perovskite-inspired cesium zirconium halide nanocrystals. ACS Mater. Lett. 2, 1644 (2020)
|
23 |
Arfin, H., Kshirsagar, A., Kaur, J., Mondal, B., Xia, Z., Chakraborty, S., Nag, A.: ns2 electron (Bi3+ and Sb3+) doping in lead-free metal halide perovskite derivatives. Chem. Mater. 32(24), 10255 (2020)
|
24 |
Jing, Y., Liu, Y., Zhao, J., Xia, Z.: Sb3+ doping-induced triplet self-trapped excitons emission in lead-free Cs2SnCl6 nanocrystals. J. Phys. Chem. Lett. 10(23), 7439–7444 (2019)
|
25 |
Tan, Z., Li, J., Zhang, C., Li, Z., Hu, Q., Xiao, Z., Kamiya, T., Hosono, H., Niu, G., Lifshitz, E., Cheng, Y., Tang, J.: Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Adv. Funct. Mater. 28(29), 1801131 (2018)
|
26 |
Wei, H., Sun, J., Mao, X., Wang, H., Chen, Z., Bai, T., Cheng, P., Zhang, R., Jin, B., Zhou, P., Liu, F., Han, K.: Cs2SnCl6: to emit or to catalyze? Te4+ ion calls the shots. Adv. Sci. (Weinh.) 10(29), 2302706 (2023)
|
27 |
Yan, A., Li, K., Zhou, Y., Ye, Y., Zhao, X., Liu, C.: Tuning the optical properties of Cs2SnCl6: Bi and Cs2SnCl6: Sb lead-free perovskites via post-annealing for white LEDs. J. Alloys Compd. 822, 153528 (2020)
|
28 |
Das Adhikari, S., Echeverría-Arrondo, C., Sánchez, R.S., Chirvony, V.S., Martínez-Pastor, J.P., Agouram, S., Muñoz-Sanjosé, V., Mora-Seró, I.: White light emission from lead-free mixedcation doped Cs2SnCl6 nanocrystals. Nanoscale 14(4), 1468–1479 (2022)
|
29 |
Zhong, Y., Huang, Y.E., Deng, T., Lin, Y.T., Huang, X.Y., Deng, Z.H., Du, K.: Multi-dopant engineering in perovskite Cs2SnCl6: white light emitter and spatially luminescent heterostructure. Inorg. Chem. 60, 17357 (2021)
|
30 |
Zhang, H., Zhu, L., Cheng, J., Chen, L., Liu, C., Yuan, S.: Photoluminescence characteristics of Sn2+ and Ce3+- doped Cs2SnCl6 double-perovskite crystals. Materials (Basel) 12(9), 1501 (2019)
|
31 |
Zhu, H., Pan, Y., Peng, C., Ding, Y., Lian, H., Lin, J., Li, L.: Precise hue control in a single-component white-light emitting perovskite Cs2SnCl6 through defect engineering based on La3+ doping. Small 19(21), 2300862 (2023)
|
32 |
Lin, H., Wei, Q., Ke, B., Lin, W., Zhao, H., Zou, B.: Excitation-wavelength-dependent emission behavior in (NH4)2SnCl6 via Sb3+ dopant. J. Phys. Chem. Lett. 14(6), 1460–1469 (2023)
|
33 |
Li, Z., Zhang, C., Li, B., Lin, C., Li, Y., Wang, L., Xie, R.J.: Large-scale room-temperature synthesis of high-efficiency leadfree perovskite derivative (NH4)2SnCl6: Te phosphor for warm wLEDs. Chem. Eng. J. 420, 129740 (2021)
|
34 |
Song, G., Li, M., Yang, Y., Liang, F., Huang, Q., Liu, X., Gong, P., Xia, Z., Lin, Z.: Lead-free tin(IV)-based organic-inorganic metal halide hybrids with excellent stability and blue-broadband emission. J. Phys. Chem. Lett. 11(5), 1808–1813 (2020)
|
35 |
Chen, Q., Zhang, M., Dai, F., Zhao, L., Liu, S., Zhao, H., Zhou, H., Teng, L., Xu, W., Wang, L., Xing, J.: An organic–inorganic tin halide perovskite with over 2000-hour emission stability. Adv. Opt. Mater. 11(5), 2202475 (2023)
|
36 |
Zhang, G., Dang, P., Xiao, H., Lian, H., Liang, S., Yang, L., Cheng, Z., Li, G., Lin, J.: Antimony-doped lead-free zero-dimensional tin(IV)-based organic–inorganic metal halide hybrids with high photoluminescence quantum yield and remarkable stability. Adv. Opt. Mater. 9(24), 2101637 (2021)
|
37 |
Kim, B., Seok, S.I.: Molecular aspects of organic cations affecting the humidity stability of perovskites. Energy Environ. Sci. 13(3), 805–820 (2020)
|
38 |
Zhong, Y., Liu, S.P., Lin, Y.P., Qi, X.H., Yang, B., Zhang, Q., Du, K.Z.: Multi-mode photoluminescence regulation in a zerodimensional organic–inorganic hybrid metal halide perovskite—[(CH3)4N]2SnCl6. Inorg. Chem. 62(35), 14422–14430 (2023)
|
39 |
Elsenety, M.M., Kaltzoglou, A., Koutselas, I., Psycharis, V., Raptopoulou, C.P., Kontos, A.G., Papadokostaki, K.G., Nasikas, N.K., Falaras, P.: Synthesis, crystal structure, and broadband emission of (CH3)3SSnCl3. Inorg. Chem. 61(11), 4769–4777 (2022)
|
40 |
Vogler, A., Nikol, H.: The structures of s2 metal complexes in the ground and sp. excited states. Comments Mod. Chem. A Comments Inorg. Chem. 14(4), 245–261 (1993)
|
41 |
Li, S., Luo, J., Liu, J., Tang, J.: Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications. J. Phys. Chem. Lett. 10(8), 1999–2007 (2019)
|
42 |
Su, B., Zhou, G., Huang, J., Song, E., Nag, A., Xia, Z.: Mn2+ doped metal halide perovskites: structure, photoluminescence, and application. Laser Photonics Rev. 15(1), 2000334 (2021)
|
43 |
Uoyama, H., Goushi, K., Shizu, K., Nomura, H., Adachi, C.: Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492(7428), 234–238 (2012)
|
44 |
Hofbeck, T., Monkowius, U., Yersin, H.: Highly efficient luminescence of Cu(I) compounds: thermally activated delayed fluorescence combined with short-lived phosphorescence. J. Am. Chem. Soc. 137(1), 399–404 (2015)
|
45 |
Du, K.Z., Feng, M.L., Li, J.R., Huang, X.Y.: Ionothermal synthesis and characterization of two cluster chalcohalides: [Cr7S8Cl2(NH3)14.5(H2O)1.5]Cl3·H2O and [Emim]2. CrystEngComm 15(28), 5594 (2013)
|
46 |
Godby, R.W., Schlüter, M., Sham, L.J.: Trends in self-energy operators and their corresponding exchange-correlation potentials. Phys. Rev. B Condens. Matter 36(12), 6497–6500 (1987)
|
47 |
Liu, R., Zhang, W., Liu, W., Li, G.: Synthesis of a Bi3+-doped Cs2HfCl6 double perovskite with highly efficient blue light emission at room temperature. Inorg. Chem. 60(14), 10451–10458 (2021)
|
48 |
Xiong, G., Yuan, L., Jin, Y., Wu, H., Li, Z., Qu, B., Ju, G., Chen, L., Yang, S., Hu, Y.: Aliovalent doping and surface grafting enable efficient and stable lead-free blue-emitting perovskite derivative. Adv. Opt. Mater. 8(20), 2000779 (2020)
|
49 |
Krasnikov, A., Mihokova, E., Nikl, M., Zazubovich, S., Zhydachevskyy, Y.: Luminescence spectroscopy and origin of luminescence centers in Bi-doped materials. Crystals (Basel) 10(3), 208 (2020)
|
50 |
Hu, R., Ge, C., Chu, L., Feng, Y., Xiao, S., Ma, Y., Liu, W., Li, X., Nazeeruddin, M.K.: Novel photoelectric material of perovskitelike (CH3)3SPbI3 nanorod arrays with high stability. J. Energy Chem. 59, 581–588 (2021)
|
/
〈 | 〉 |