White light emission in 0D halide perovskite [(CH3)3S]2SnCl6·H2O crystals through variation of doping ns2 ions

Yitong Lin, Yu Zhong, Yangpeng Lin, Jiawei Lin, Lei Pang, Zhilong Zhang, Yi Zhao, Xiao-Ying Huang, Ke-Zhao Du

PDF(5189 KB)
PDF(5189 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (1) : 6. DOI: 10.1007/s12200-024-00109-3
RESEARCH ARTICLE

White light emission in 0D halide perovskite [(CH3)3S]2SnCl6·H2O crystals through variation of doping ns2 ions

Author information +
History +

Abstract

With the rapid development of white LEDs, the research of new and efficient white light emitting materials has attracted increasing attention. Zero dimensional (0D) organic–inorganic hybrid metal halide perovskites with superior luminescent property are promising candidates for LED application, due to their abundant and tailorable structure. Herein, [(CH3)3S]2SnCl6·H2O is synthesized as a host for dopant ions Bi3+ and Sb3+. The Sb3+ doped, or Bi3+/Sb3+ co-doped, [(CH3)3S]2SnCl6·H2O has a tunable optical emission spectrum by means of varying dopant ratio and excitation wavelength. As a result, we can achieve single-phase materials suitable for emission ranging from cold white light to warm white light. The intrinsic mechanism is examined in this work, to clarify the dopant effect on the optical properties. The high stability of title crystalline material, against water, oxygen and heat, makes it promising for further application.

Graphical abstract

Keywords

0D / Metal halide / White light / Perovskite / Ions doping / Excitation dependent

Cite this article

Download citation ▾
Yitong Lin, Yu Zhong, Yangpeng Lin, Jiawei Lin, Lei Pang, Zhilong Zhang, Yi Zhao, Xiao-Ying Huang, Ke-Zhao Du. White light emission in 0D halide perovskite [(CH3)3S]2SnCl6·H2O crystals through variation of doping ns2 ions. Front. Optoelectron., 2024, 17(1): 6 https://doi.org/10.1007/s12200-024-00109-3

References

[1]
Shang, J., Cong, C., Wang, Z., Peimyoo, N., Wu, L., Zou, C., Chen, Y., Chin, X.Y., Wang, J., Soci, C., Huang, W., Yu, T.: Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers. Nat. Commun. 8(1), 543 (2017)
CrossRef Google scholar
[2]
Kitai, A.: Materials for solid state lighting and displays. John Wiley & Sons, Ltd (2016)
CrossRef Google scholar
[3]
Humphreys, C.J.: Solid-state lighting. MRS Bull. 33(4), 459–470 (2008)
CrossRef Google scholar
[4]
Tsao, J.Y., Saunders, H.D., Creighton, J.R., Coltrin, M.E., Simmons, J.A.: Solid-state lighting: an energy-economics perspective. J. Phys. D Appl. Phys. 43(35), 354001 (2010)
CrossRef Google scholar
[5]
Guner, T., Demir, M.: A review on halide perovskites as color conversion layers in white light emitting diode applications. Phys. Status Solidi A Appl. Mater. Sci. 215(13), 1800120 (2018)
CrossRef Google scholar
[6]
Sun, N., Gao, W., Dong, H., Liu, Y., Liu, X., Wu, Z., Song, L., Ran, C., Chen, Y.: Architecture of p-i-n Sn-based perovskite solar cells: characteristics, advances, and perspectives. ACS Energy Lett. 6(8), 2863–2875 (2021)
CrossRef Google scholar
[7]
Lim, E.L., Hagfeldt, A., Bi, D.: Toward highly efficient and stable Sn2+ and mixed Pb2+/Sn2+ based halide perovskite solar cells through device engineering. Energy Environ. Sci. 14(6), 3256–3300 (2021)
CrossRef Google scholar
[8]
Ke, W., Stoumpos, C.C., Kanatzidis, M.G.: “Unleaded” perovskites: status quo and future prospects of tin-based perovskite solar cells. Adv. Mater. 31(47), e1803230 (2019)
CrossRef Google scholar
[9]
Zhang, K., Zhu, N., Zhang, M., Wang, L., Xing, J.: Opportunities and challenges in perovskite LED commercialization. J. Mater. Chem. C Mater. Opt. Electron. Devices 9(11), 3795–3799 (2021)
CrossRef Google scholar
[10]
Pacchioni, G.: Highly efficient perovskite LEDs. Nat. Rev. Mater. 6(2), 108 (2021)
CrossRef Google scholar
[11]
Kim, J.S., Heo, J.M., Park, G.S., Woo, S.J., Cho, C., Yun, H.J., Kim, D.H., Park, J., Lee, S.C., Park, S.H., Yoon, E., Greenham, N.C., Lee, T.W.: Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611(7937), 688–694 (2022)
CrossRef Google scholar
[12]
Lin, Y.P., Hu, S., Xia, B., Fan, K.Q., Gong, L.K., Kong, J.T., Huang, X.Y., Xiao, Z., Du, K.Z.: Material design and optoelectronic properties of three-dimensional quadruple perovskite halides. J. Phys. Chem. Lett. 10(17), 5219–5225 (2019)
CrossRef Google scholar
[13]
Lin, Y.P., Xia, B., Hu, S., Zhong, Y., Huang, Y.E., Zhang, Z.Z., Wu, N., Wu, Y.W., Wu, X.H., Huang, X.Y., Xiao, Z., Du, K.Z.: Reversible release and fixation of bromine in vacancy-ordered bromide perovskites. Energy Environ. Mater. 3(4), 535–540 (2020)
CrossRef Google scholar
[14]
Lin, Y.P., Xia, B., Hu, S., Liu, Z., Huang, X.Y., Xiao, Z., Du, K.Z.: Vacancy-ordered chloride perovskites for reversible release–storage of chlorine. J. Mater. Sci. 57(39), 18266–18276 (2022)
CrossRef Google scholar
[15]
Wu, Y.N., Zhu, L.L., Zhao, Y., Xu, S.Y., Huang, P.W., Chen, B.C., Huang, Z.Y., Huang, X.Y., Chen, J., Du, K.Z.: Mussel-inspired two-dimensional halide perovskite facilitated dopamine polymerization and self-adhesive photoelectric coating. Inorg. Chem. 62(2), 1062–1068 (2023)
CrossRef Google scholar
[16]
Zhao, Y., Zhong, H.Y., Li, L., Lin, W.L., Huang, Y.E., Su, B.Y., Wu, X.H., Huang, X.Y., Du, K.Z.: Crystalline intermarriage of hybrid organic–inorganic halide perovskite and epoxide: enhanced stability and modified optical properties. ACS Appl. Energy Mater. 4(12), 13550–13555 (2021)
CrossRef Google scholar
[17]
Chen, Y., Gao, C., Yang, T., Li, W., Xu, H., Sun, Z.: Research advances of ferroelectric semiconductors of 2D hybrid perovskites toward photoelectronic applications. Chin. J. Struct. Chem. 41, 2204001–2204011 (2022)
[18]
Jing, Y., Liu, Y., Li, M., Xia, Z.: Photoluminescence of singlet/triplet self-trapped excitons in Sb3+-based metal halides. Adv. Opt. Mater. 9(8), 2002213 (2021)
CrossRef Google scholar
[19]
McCall, K.M., Morad, V., Benin, B.M., Kovalenko, M.V.: Efficient lone-pair-driven luminescence: structure-property relationships in emissive 5s2 metal halides. ACS Mater. Lett. 2(9), 1218–1232 (2020)
CrossRef Google scholar
[20]
Liu, S., Yang, B., Chen, J., Zheng, D., Tang, Z., Deng, W., Han, K.: Colloidal synthesis and tunable multicolor emission of vacancy-ordered Cs2HfCl6 perovskite nanocrystals. Laser Photonics Rev. 16(2), 2100439 (2022)
CrossRef Google scholar
[21]
Liu, S., Yang, B., Chen, J., Wei, D., Zheng, D., Kong, Q., Deng, W., Han, K.: Efficient thermally activated delayed fluorescence from all-inorganic cesium zirconium halide perovskite nanocrystals. Angew. Chem. Int. Ed. Engl. 59(49), 21925–21929 (2020)
CrossRef Google scholar
[22]
Abfalterer, A., Shamsi, J., Kubicki, D., Savory, C., Xiao, J., Divitini, G., Li, W., Macpherson, S., Gałkowski, K., MacManus-Driscoll, J., Scanlon, D., Stranks, S.: Colloidal synthesis and optical properties of perovskite-inspired cesium zirconium halide nanocrystals. ACS Mater. Lett. 2, 1644 (2020)
CrossRef Google scholar
[23]
Arfin, H., Kshirsagar, A., Kaur, J., Mondal, B., Xia, Z., Chakraborty, S., Nag, A.: ns2 electron (Bi3+ and Sb3+) doping in lead-free metal halide perovskite derivatives. Chem. Mater. 32(24), 10255 (2020)
CrossRef Google scholar
[24]
Jing, Y., Liu, Y., Zhao, J., Xia, Z.: Sb3+ doping-induced triplet self-trapped excitons emission in lead-free Cs2SnCl6 nanocrystals. J. Phys. Chem. Lett. 10(23), 7439–7444 (2019)
CrossRef Google scholar
[25]
Tan, Z., Li, J., Zhang, C., Li, Z., Hu, Q., Xiao, Z., Kamiya, T., Hosono, H., Niu, G., Lifshitz, E., Cheng, Y., Tang, J.: Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Adv. Funct. Mater. 28(29), 1801131 (2018)
CrossRef Google scholar
[26]
Wei, H., Sun, J., Mao, X., Wang, H., Chen, Z., Bai, T., Cheng, P., Zhang, R., Jin, B., Zhou, P., Liu, F., Han, K.: Cs2SnCl6: to emit or to catalyze? Te4+ ion calls the shots. Adv. Sci. (Weinh.) 10(29), 2302706 (2023)
CrossRef Google scholar
[27]
Yan, A., Li, K., Zhou, Y., Ye, Y., Zhao, X., Liu, C.: Tuning the optical properties of Cs2SnCl6: Bi and Cs2SnCl6: Sb lead-free perovskites via post-annealing for white LEDs. J. Alloys Compd. 822, 153528 (2020)
CrossRef Google scholar
[28]
Das Adhikari, S., Echeverría-Arrondo, C., Sánchez, R.S., Chirvony, V.S., Martínez-Pastor, J.P., Agouram, S., Muñoz-Sanjosé, V., Mora-Seró, I.: White light emission from lead-free mixedcation doped Cs2SnCl6 nanocrystals. Nanoscale 14(4), 1468–1479 (2022)
CrossRef Google scholar
[29]
Zhong, Y., Huang, Y.E., Deng, T., Lin, Y.T., Huang, X.Y., Deng, Z.H., Du, K.: Multi-dopant engineering in perovskite Cs2SnCl6: white light emitter and spatially luminescent heterostructure. Inorg. Chem. 60, 17357 (2021)
CrossRef Google scholar
[30]
Zhang, H., Zhu, L., Cheng, J., Chen, L., Liu, C., Yuan, S.: Photoluminescence characteristics of Sn2+ and Ce3+- doped Cs2SnCl6 double-perovskite crystals. Materials (Basel) 12(9), 1501 (2019)
CrossRef Google scholar
[31]
Zhu, H., Pan, Y., Peng, C., Ding, Y., Lian, H., Lin, J., Li, L.: Precise hue control in a single-component white-light emitting perovskite Cs2SnCl6 through defect engineering based on La3+ doping. Small 19(21), 2300862 (2023)
CrossRef Google scholar
[32]
Lin, H., Wei, Q., Ke, B., Lin, W., Zhao, H., Zou, B.: Excitation-wavelength-dependent emission behavior in (NH4)2SnCl6 via Sb3+ dopant. J. Phys. Chem. Lett. 14(6), 1460–1469 (2023)
CrossRef Google scholar
[33]
Li, Z., Zhang, C., Li, B., Lin, C., Li, Y., Wang, L., Xie, R.J.: Large-scale room-temperature synthesis of high-efficiency leadfree perovskite derivative (NH4)2SnCl6: Te phosphor for warm wLEDs. Chem. Eng. J. 420, 129740 (2021)
CrossRef Google scholar
[34]
Song, G., Li, M., Yang, Y., Liang, F., Huang, Q., Liu, X., Gong, P., Xia, Z., Lin, Z.: Lead-free tin(IV)-based organic-inorganic metal halide hybrids with excellent stability and blue-broadband emission. J. Phys. Chem. Lett. 11(5), 1808–1813 (2020)
CrossRef Google scholar
[35]
Chen, Q., Zhang, M., Dai, F., Zhao, L., Liu, S., Zhao, H., Zhou, H., Teng, L., Xu, W., Wang, L., Xing, J.: An organic–inorganic tin halide perovskite with over 2000-hour emission stability. Adv. Opt. Mater. 11(5), 2202475 (2023)
CrossRef Google scholar
[36]
Zhang, G., Dang, P., Xiao, H., Lian, H., Liang, S., Yang, L., Cheng, Z., Li, G., Lin, J.: Antimony-doped lead-free zero-dimensional tin(IV)-based organic–inorganic metal halide hybrids with high photoluminescence quantum yield and remarkable stability. Adv. Opt. Mater. 9(24), 2101637 (2021)
CrossRef Google scholar
[37]
Kim, B., Seok, S.I.: Molecular aspects of organic cations affecting the humidity stability of perovskites. Energy Environ. Sci. 13(3), 805–820 (2020)
CrossRef Google scholar
[38]
Zhong, Y., Liu, S.P., Lin, Y.P., Qi, X.H., Yang, B., Zhang, Q., Du, K.Z.: Multi-mode photoluminescence regulation in a zerodimensional organic–inorganic hybrid metal halide perovskite—[(CH3)4N]2SnCl6. Inorg. Chem. 62(35), 14422–14430 (2023)
CrossRef Google scholar
[39]
Elsenety, M.M., Kaltzoglou, A., Koutselas, I., Psycharis, V., Raptopoulou, C.P., Kontos, A.G., Papadokostaki, K.G., Nasikas, N.K., Falaras, P.: Synthesis, crystal structure, and broadband emission of (CH3)3SSnCl3. Inorg. Chem. 61(11), 4769–4777 (2022)
CrossRef Google scholar
[40]
Vogler, A., Nikol, H.: The structures of s2 metal complexes in the ground and sp. excited states. Comments Mod. Chem. A Comments Inorg. Chem. 14(4), 245–261 (1993)
CrossRef Google scholar
[41]
Li, S., Luo, J., Liu, J., Tang, J.: Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications. J. Phys. Chem. Lett. 10(8), 1999–2007 (2019)
CrossRef Google scholar
[42]
Su, B., Zhou, G., Huang, J., Song, E., Nag, A., Xia, Z.: Mn2+ doped metal halide perovskites: structure, photoluminescence, and application. Laser Photonics Rev. 15(1), 2000334 (2021)
CrossRef Google scholar
[43]
Uoyama, H., Goushi, K., Shizu, K., Nomura, H., Adachi, C.: Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492(7428), 234–238 (2012)
CrossRef Google scholar
[44]
Hofbeck, T., Monkowius, U., Yersin, H.: Highly efficient luminescence of Cu(I) compounds: thermally activated delayed fluorescence combined with short-lived phosphorescence. J. Am. Chem. Soc. 137(1), 399–404 (2015)
CrossRef Google scholar
[45]
Du, K.Z., Feng, M.L., Li, J.R., Huang, X.Y.: Ionothermal synthesis and characterization of two cluster chalcohalides: [Cr7S8Cl2(NH3)14.5(H2O)1.5]Cl3·H2O and [Emim]2. CrystEngComm 15(28), 5594 (2013)
CrossRef Google scholar
[46]
Godby, R.W., Schlüter, M., Sham, L.J.: Trends in self-energy operators and their corresponding exchange-correlation potentials. Phys. Rev. B Condens. Matter 36(12), 6497–6500 (1987)
CrossRef Google scholar
[47]
Liu, R., Zhang, W., Liu, W., Li, G.: Synthesis of a Bi3+-doped Cs2HfCl6 double perovskite with highly efficient blue light emission at room temperature. Inorg. Chem. 60(14), 10451–10458 (2021)
CrossRef Google scholar
[48]
Xiong, G., Yuan, L., Jin, Y., Wu, H., Li, Z., Qu, B., Ju, G., Chen, L., Yang, S., Hu, Y.: Aliovalent doping and surface grafting enable efficient and stable lead-free blue-emitting perovskite derivative. Adv. Opt. Mater. 8(20), 2000779 (2020)
CrossRef Google scholar
[49]
Krasnikov, A., Mihokova, E., Nikl, M., Zazubovich, S., Zhydachevskyy, Y.: Luminescence spectroscopy and origin of luminescence centers in Bi-doped materials. Crystals (Basel) 10(3), 208 (2020)
CrossRef Google scholar
[50]
Hu, R., Ge, C., Chu, L., Feng, Y., Xiao, S., Ma, Y., Liu, W., Li, X., Nazeeruddin, M.K.: Novel photoelectric material of perovskitelike (CH3)3SPbI3 nanorod arrays with high stability. J. Energy Chem. 59, 581–588 (2021)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s) 2024
AI Summary AI Mindmap
PDF(5189 KB)

Accesses

Citations

Detail

Sections
Recommended

/