All laser direct writing process for temperature sensor based on graphene and silver

  • Qi Li 1 ,
  • Ruijie Bai 2 ,
  • Lianbo Guo , 3 ,
  • Yang Gao , 1,3
Expand
  • 1. Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
  • 2. North Automatic Control Technology Institute, Taiyuan 030006, China
  • 3. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan 430074, China
lbguo@hust.edu.cn
yanggao@ecust.edu.cn

Received date: 16 Oct 2023

Accepted date: 18 Dec 2023

Published date: 15 Mar 2024

Copyright

2024 The Author(s) 2024

Abstract

A highly sensitive temperature sensing array is prepared by all laser direct writing (LDW) method, using laser induced silver (LIS) as electrodes and laser induced graphene (LIG) as temperature sensing layer. A finite element analysis (FEA) photothermal model incorporating a phase transition mechanism is developed to investigate the relationship between laser parameters and LIG properties, providing guidance for laser processing parameters selection with laser power of 1–5 W and laser scanning speed (greater than 50 mm/s). The deviation of simulation and experimental data for widths and thickness of LIG are less than 5% and 9%, respectively. The electrical properties and temperature responsiveness of LIG are also studied. By changing the laser process parameters, the thickness of the LIG ablation grooves can be in the range of 30–120 µm and the resistivity of LIG can be regulated within the range of 0.031–67.2 Ω·m. The percentage temperature coefficient of resistance (TCR) is calculated as –0.58%/°C. Furthermore, the FEA photothermal model is studied through experiments and simulations data regarding LIS, and the average deviation between experiment and simulation is less than 5%. The LIS sensing samples have a thickness of about 14 µm, an electrical resistivity of 0.0001–100 Ω·m is insensitive to temperature and pressure stimuli. Moreover, for a LIS-LIG based temperature sensing array, a correction factor is introduced to compensate for the LIG temperature sensing being disturbed by pressure stimuli, the temperature measurement difference is decreased from 11.2 to 2.6 °C, indicating good accuracy for temperature measurement.

Cite this article

Qi Li , Ruijie Bai , Lianbo Guo , Yang Gao . All laser direct writing process for temperature sensor based on graphene and silver[J]. Frontiers of Optoelectronics, 2024 , 17(1) : 5 . DOI: 10.1007/s12200-024-00108-4

1
Su, C.-C., Li, C.-H., Chang, N.-K., Gao, F., Chang, S.-H.: Fabrication of high sensitivity carbon microcoil pressure sensors. Sensors. 12(8), 10034–10041 (2012)

DOI

2
Sun, Z., Yang, S., Zhao, P., Zhang, J., Yang, Y., Ye, X., Zhao, X., Cui, N., Tong, Y., Liu, Y., Chen, X., Tang, Q.: Skin-like ultrasensitive strain sensor for full-range detection of human health monitoring. ACS Appl. Mater. Interfaces 12(11), 13287–13295 (2020)

DOI

3
Liu, J., Guo, H., Li, M., Zhang, C., Chu, Y., Che, L., Zhang, Z., Li, R., Sun, J., Lu, Y.: Photolithography-assisted precise patterning of nanocracks for ultrasensitive strain sensors. J. Mater. Chem. A 9(7), 4262–4272 (2021)

DOI

4
Shao, J., Chen, X., Li, X., Tian, H., Wang, C., Lu, B.: Nanoimprint lithography for the manufacturing of flexible electronics. Sci. China. Technol. Sci. 62(2), 175–198 (2019)

DOI

5
Wu, J., Pang, H., Ding, L., Wang, Y., He, X., Shu, Q., Xuan, S., Gong, X.: A lightweight, ultrathin aramid-based flexible sensor using a combined inkjet printing and buckling strategy. Chem. Eng. J. 421, 129830 (2021)

DOI

6
Kang, T.K.: Inkjet printing of highly sensitive, transparent, flexible linear piezoresistive strain sensors. Coatings 11(1), 51 (2021)

DOI

7
Zhang, D., Liu, X., Qiu, J.: 3D printing of glass by additive manufacturing techniques: a review. Front. Optoelectron. 14(3), 263–277 (2021)

DOI

8
Wang, Y., Luo, Y., Sun, C., Xiong, B., Wang, J., Hao, Z., Han, Y., Wang, L.L., Li, H.: Laser annealing of SiO2 film deposited by ICPECVD for fabrication of silicon based low loss waveguide. Front. Optoelectron. 9(2), 323–329 (2016)

DOI

9
Feng, J., Tian, Y., Wang, S., Xiao, M., Hui, Z., Hang, C., Duley, W., Zhou, Y.: Femtosecond laser irradiation induced heterojunctions between carbon nanofibers and silver nanowires for a flexible strain sensor. J. Mater. Sci. Technol. 84, 139–146 (2021)

DOI

10
Lin, J., Peng, Z., Liu, Y., Ruiz-Zepeda, F., Ye, R., Samuel, E., Yacaman, M., Yakobson, B., Tour, J.: Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5(1), 5714 (2014)

DOI

11
Wang, K., Tai, G., Wong, K.H., Lau, S.P., Guo, W.: Ni induced few-layer graphene growth at low temperature by pulsed laser deposition. AIP Adv. 1(2), 022141 (2011)

DOI

12
Yang, T., Lin, H., Jia, B.: Two-dimensional material functional devices enabled by direct laser fabrication. Front. Optoelectron. 11(1), 2–22 (2018)

DOI

13
Wei, X., Zhou, Y., Hou, W., Jiang, L., Samani, M.M., Park, J.B., He, X., Gao, Y., Fan, L., Baldacchini, T., Silvain, J., Lu, Y.: Laser-based micro/nanofabrication in one, two and three dimensions. Front. Optoelectron. 8(4), 351–378 (2015)

DOI

14
Kang, B., Han, S., Kim, J., Ko, S., Yang, M.: One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle. J. Phys. Chem. C 115(48), 23664–23670 (2011)

DOI

15
Bai, S., Zhang, S., Zhou, W., Ma, D., Ma, Y., Joshi, P., Hu, A.: Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors. Nano-Micro Lett 9(4), 42 (2017)

DOI

16
Carvalho, A.F., Fernandes, A.J.S., Leitão, C., Deuermeier, J., Marques, A.C., Martins, R., Fortunato, E., Costa, F.M.: Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide. Adv. Func. Mater. 28(52), 1805271 (2018)

DOI

17
Cheng, Z., Qin, C., Wang, F., He, H., Goda, K.: Progress on mid-IR graphene photonics and biochemical applications. Front. Optoelectron. 9(2), 259–269 (2016)

DOI

18
Shin, J., Jeong, B., Kim, J., Nam, V.B., Yoon, Y., Jung, J., Hong, S., Lee, H., Eom, H., Yeo, J., Choi, J., Lee, D., Ko, S.H.: Sensitive wearable temperature sensor with seamless monolithic integration. Adv. Mater. 32(2), 1905527 (2020)

DOI

19
Li, Q., Bai, R., Gao, Y., Wu, R., Ju, K., Tan, J., Xuan, F.: Laser direct writing of flexible sensor arrays based on carbonized carboxymethylcellulose and its composites for simultaneous mechanical and thermal stimuli detection. ACS Appl. Mater. Interfaces 13(8), 10171–10180 (2021)

DOI

20
Bai, R., Gao, Y., Lu, C., Tan, J., Xuan, F.: Femtosecond laser micro-fabricated flexible sensor arrays for simultaneous mechanical and thermal stimuli detection. Measurement 169, 108348 (2021)

DOI

21
Wang, Z., Chen, B., Sun, S., Pan, L., Gao, Y.: Maskless formation of conductive carbon layer on leather for highly sensitive flexible strain sensors. Adv. Elect. Mater. 6(9), 2000549 (2020)

DOI

22
Gao, Y., Li, Q., Wu, R., Sha, J., Lu, Y., Xuan, F.: Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer toward electronic skins. Adv. Func. Mater. 29(2), 1806786 (2019)

DOI

23
Tao, L., Tian, H., Liu, Y., Ju, Z., Pang, Y., Chen, Y., Wang, D., Tian, X., Yan, J., Deng, N., Yang, Y., Ren, T.: An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat. Commun. 8(1), 14579 (2017)

DOI

24
Liu, W., Rong, Y., Yang, R., Wu, C., Zhang, G., Huang, Y.: Revealing the interaction mechanism of pulsed laser processing with the application of acoustic emission. Front. Optoelectron. 16(2), 14 (2023)

DOI

25
Soci, C., Zhang, A., Xiang, B., Dayeh, S., Aplin, D., Park, J., Bao, X., Lo, Y., Wang, D.: ZnO Nanowire UV photodetectors with high internal gain. Nano Lett. 7(4), 1003–1009 (2007)

DOI

26
Wang, B., Zhang, Z., Zhong, S., Zheng, Z., Xu, P., Zhang, H.: Recent progress in high-performance photo-detectors enabled by the pulsed laser deposition technology. J. Mater. Chem. C 8(15), 4988–5014 (2020)

DOI

27
Tsui, H., Healy, N.: Recent progress of semiconductor optoelectronic fibers. Front. Optoelectron. 14(4), 383–398 (2021)

DOI

28
Afshar, M., Preiß, E.M., Sauerwald, T., Rodner, M., Feili, D., Straub, M., König, K., Schütze, A., Seidel, H.: Indium-tin-oxide single-nanowire gas sensor fabricated via laser writing and subsequent etching. Sens. Actuators B 215, 525–535 (2015)

DOI

29
Gao, Y., Lu, Q., Yan, P., Tian, P., Zhu, M., Xiao, B., Xuan, F.: Theory-guided design of Pd/C nanocomposite for H2 sensing at room-temperature. Appl. Surf. Sci. 581, 152367 (2022)

DOI

30
Ouyang, L., Hu, Y., Zhu, L., Cheng, G.J., Irudayaraj, J.: A reusable laser wrapped graphene-Ag array based SERS sensor for trace detection of genomic DNA methylation. Biosens. Bioelectron. 92, 755–762 (2017)

DOI

31
Marques, A.C., Cardoso, A.R., Martins, R., Sales, M.G.F., Fortunato, E.: Laser-induced graphene-based platforms for dual biorecognition of molecules. ACS Appl. Nano Mater. 3(3), 2795–2803 (2020)

DOI

32
Luo, S., Hoang, P., Liu, T.: Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 96, 522–531 (2016)

DOI

33
Samouco, A., Marques, A.C., Pimentel, A., Martins, R., Fortunato, E.: Laser-induced electrodes towards low-cost flexible UV ZnO sensors. Flexible Printed Electron. 3(4), 044002 (2018)

DOI

34
Pinheiro, T., Rosa, A., Ornelas, C., Coelho, J., Fortunato, E., Marques, A.C., Martins, R.: Influence of CO2 laser beam modelling on electronic and electrochemical properties of paper-based laser-induced graphene for disposable pH electrochemical sensors. Carbon Trends 11, 100271 (2023)

DOI

35
Guo, L., Jiang, H., Shao, R., Zhang, Y., Xie, S., Wang, J., Li, X., Jiang, F., Chen, Q., Zhang, T., Sun, H.: Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon 50(4), 1667–1673 (2012)

DOI

Outlines

/