All laser direct writing process for temperature sensor based on graphene and silver

Qi Li, Ruijie Bai, Lianbo Guo, Yang Gao

PDF(2347 KB)
PDF(2347 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (1) : 5. DOI: 10.1007/s12200-024-00108-4
RESEARCH ARTICLE

All laser direct writing process for temperature sensor based on graphene and silver

Author information +
History +

Abstract

A highly sensitive temperature sensing array is prepared by all laser direct writing (LDW) method, using laser induced silver (LIS) as electrodes and laser induced graphene (LIG) as temperature sensing layer. A finite element analysis (FEA) photothermal model incorporating a phase transition mechanism is developed to investigate the relationship between laser parameters and LIG properties, providing guidance for laser processing parameters selection with laser power of 1–5 W and laser scanning speed (greater than 50 mm/s). The deviation of simulation and experimental data for widths and thickness of LIG are less than 5% and 9%, respectively. The electrical properties and temperature responsiveness of LIG are also studied. By changing the laser process parameters, the thickness of the LIG ablation grooves can be in the range of 30–120 µm and the resistivity of LIG can be regulated within the range of 0.031–67.2 Ω·m. The percentage temperature coefficient of resistance (TCR) is calculated as –0.58%/°C. Furthermore, the FEA photothermal model is studied through experiments and simulations data regarding LIS, and the average deviation between experiment and simulation is less than 5%. The LIS sensing samples have a thickness of about 14 µm, an electrical resistivity of 0.0001–100 Ω·m is insensitive to temperature and pressure stimuli. Moreover, for a LIS-LIG based temperature sensing array, a correction factor is introduced to compensate for the LIG temperature sensing being disturbed by pressure stimuli, the temperature measurement difference is decreased from 11.2 to 2.6 °C, indicating good accuracy for temperature measurement.

Graphical abstract

Keywords

Laser direct writing / Temperature sensor / Finite element analysis / Laser induced graphene / Laser induced silver

Cite this article

Download citation ▾
Qi Li, Ruijie Bai, Lianbo Guo, Yang Gao. All laser direct writing process for temperature sensor based on graphene and silver. Front. Optoelectron., 2024, 17(1): 5 https://doi.org/10.1007/s12200-024-00108-4

References

[1]
Su, C.-C., Li, C.-H., Chang, N.-K., Gao, F., Chang, S.-H.: Fabrication of high sensitivity carbon microcoil pressure sensors. Sensors. 12(8), 10034–10041 (2012)
CrossRef Google scholar
[2]
Sun, Z., Yang, S., Zhao, P., Zhang, J., Yang, Y., Ye, X., Zhao, X., Cui, N., Tong, Y., Liu, Y., Chen, X., Tang, Q.: Skin-like ultrasensitive strain sensor for full-range detection of human health monitoring. ACS Appl. Mater. Interfaces 12(11), 13287–13295 (2020)
CrossRef Google scholar
[3]
Liu, J., Guo, H., Li, M., Zhang, C., Chu, Y., Che, L., Zhang, Z., Li, R., Sun, J., Lu, Y.: Photolithography-assisted precise patterning of nanocracks for ultrasensitive strain sensors. J. Mater. Chem. A 9(7), 4262–4272 (2021)
CrossRef Google scholar
[4]
Shao, J., Chen, X., Li, X., Tian, H., Wang, C., Lu, B.: Nanoimprint lithography for the manufacturing of flexible electronics. Sci. China. Technol. Sci. 62(2), 175–198 (2019)
CrossRef Google scholar
[5]
Wu, J., Pang, H., Ding, L., Wang, Y., He, X., Shu, Q., Xuan, S., Gong, X.: A lightweight, ultrathin aramid-based flexible sensor using a combined inkjet printing and buckling strategy. Chem. Eng. J. 421, 129830 (2021)
CrossRef Google scholar
[6]
Kang, T.K.: Inkjet printing of highly sensitive, transparent, flexible linear piezoresistive strain sensors. Coatings 11(1), 51 (2021)
CrossRef Google scholar
[7]
Zhang, D., Liu, X., Qiu, J.: 3D printing of glass by additive manufacturing techniques: a review. Front. Optoelectron. 14(3), 263–277 (2021)
CrossRef Google scholar
[8]
Wang, Y., Luo, Y., Sun, C., Xiong, B., Wang, J., Hao, Z., Han, Y., Wang, L.L., Li, H.: Laser annealing of SiO2 film deposited by ICPECVD for fabrication of silicon based low loss waveguide. Front. Optoelectron. 9(2), 323–329 (2016)
CrossRef Google scholar
[9]
Feng, J., Tian, Y., Wang, S., Xiao, M., Hui, Z., Hang, C., Duley, W., Zhou, Y.: Femtosecond laser irradiation induced heterojunctions between carbon nanofibers and silver nanowires for a flexible strain sensor. J. Mater. Sci. Technol. 84, 139–146 (2021)
CrossRef Google scholar
[10]
Lin, J., Peng, Z., Liu, Y., Ruiz-Zepeda, F., Ye, R., Samuel, E., Yacaman, M., Yakobson, B., Tour, J.: Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5(1), 5714 (2014)
CrossRef Google scholar
[11]
Wang, K., Tai, G., Wong, K.H., Lau, S.P., Guo, W.: Ni induced few-layer graphene growth at low temperature by pulsed laser deposition. AIP Adv. 1(2), 022141 (2011)
CrossRef Google scholar
[12]
Yang, T., Lin, H., Jia, B.: Two-dimensional material functional devices enabled by direct laser fabrication. Front. Optoelectron. 11(1), 2–22 (2018)
CrossRef Google scholar
[13]
Wei, X., Zhou, Y., Hou, W., Jiang, L., Samani, M.M., Park, J.B., He, X., Gao, Y., Fan, L., Baldacchini, T., Silvain, J., Lu, Y.: Laser-based micro/nanofabrication in one, two and three dimensions. Front. Optoelectron. 8(4), 351–378 (2015)
CrossRef Google scholar
[14]
Kang, B., Han, S., Kim, J., Ko, S., Yang, M.: One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle. J. Phys. Chem. C 115(48), 23664–23670 (2011)
CrossRef Google scholar
[15]
Bai, S., Zhang, S., Zhou, W., Ma, D., Ma, Y., Joshi, P., Hu, A.: Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors. Nano-Micro Lett 9(4), 42 (2017)
CrossRef Google scholar
[16]
Carvalho, A.F., Fernandes, A.J.S., Leitão, C., Deuermeier, J., Marques, A.C., Martins, R., Fortunato, E., Costa, F.M.: Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide. Adv. Func. Mater. 28(52), 1805271 (2018)
CrossRef Google scholar
[17]
Cheng, Z., Qin, C., Wang, F., He, H., Goda, K.: Progress on mid-IR graphene photonics and biochemical applications. Front. Optoelectron. 9(2), 259–269 (2016)
CrossRef Google scholar
[18]
Shin, J., Jeong, B., Kim, J., Nam, V.B., Yoon, Y., Jung, J., Hong, S., Lee, H., Eom, H., Yeo, J., Choi, J., Lee, D., Ko, S.H.: Sensitive wearable temperature sensor with seamless monolithic integration. Adv. Mater. 32(2), 1905527 (2020)
CrossRef Google scholar
[19]
Li, Q., Bai, R., Gao, Y., Wu, R., Ju, K., Tan, J., Xuan, F.: Laser direct writing of flexible sensor arrays based on carbonized carboxymethylcellulose and its composites for simultaneous mechanical and thermal stimuli detection. ACS Appl. Mater. Interfaces 13(8), 10171–10180 (2021)
CrossRef Google scholar
[20]
Bai, R., Gao, Y., Lu, C., Tan, J., Xuan, F.: Femtosecond laser micro-fabricated flexible sensor arrays for simultaneous mechanical and thermal stimuli detection. Measurement 169, 108348 (2021)
CrossRef Google scholar
[21]
Wang, Z., Chen, B., Sun, S., Pan, L., Gao, Y.: Maskless formation of conductive carbon layer on leather for highly sensitive flexible strain sensors. Adv. Elect. Mater. 6(9), 2000549 (2020)
CrossRef Google scholar
[22]
Gao, Y., Li, Q., Wu, R., Sha, J., Lu, Y., Xuan, F.: Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer toward electronic skins. Adv. Func. Mater. 29(2), 1806786 (2019)
CrossRef Google scholar
[23]
Tao, L., Tian, H., Liu, Y., Ju, Z., Pang, Y., Chen, Y., Wang, D., Tian, X., Yan, J., Deng, N., Yang, Y., Ren, T.: An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat. Commun. 8(1), 14579 (2017)
CrossRef Google scholar
[24]
Liu, W., Rong, Y., Yang, R., Wu, C., Zhang, G., Huang, Y.: Revealing the interaction mechanism of pulsed laser processing with the application of acoustic emission. Front. Optoelectron. 16(2), 14 (2023)
CrossRef Google scholar
[25]
Soci, C., Zhang, A., Xiang, B., Dayeh, S., Aplin, D., Park, J., Bao, X., Lo, Y., Wang, D.: ZnO Nanowire UV photodetectors with high internal gain. Nano Lett. 7(4), 1003–1009 (2007)
CrossRef Google scholar
[26]
Wang, B., Zhang, Z., Zhong, S., Zheng, Z., Xu, P., Zhang, H.: Recent progress in high-performance photo-detectors enabled by the pulsed laser deposition technology. J. Mater. Chem. C 8(15), 4988–5014 (2020)
CrossRef Google scholar
[27]
Tsui, H., Healy, N.: Recent progress of semiconductor optoelectronic fibers. Front. Optoelectron. 14(4), 383–398 (2021)
CrossRef Google scholar
[28]
Afshar, M., Preiß, E.M., Sauerwald, T., Rodner, M., Feili, D., Straub, M., König, K., Schütze, A., Seidel, H.: Indium-tin-oxide single-nanowire gas sensor fabricated via laser writing and subsequent etching. Sens. Actuators B 215, 525–535 (2015)
CrossRef Google scholar
[29]
Gao, Y., Lu, Q., Yan, P., Tian, P., Zhu, M., Xiao, B., Xuan, F.: Theory-guided design of Pd/C nanocomposite for H2 sensing at room-temperature. Appl. Surf. Sci. 581, 152367 (2022)
CrossRef Google scholar
[30]
Ouyang, L., Hu, Y., Zhu, L., Cheng, G.J., Irudayaraj, J.: A reusable laser wrapped graphene-Ag array based SERS sensor for trace detection of genomic DNA methylation. Biosens. Bioelectron. 92, 755–762 (2017)
CrossRef Google scholar
[31]
Marques, A.C., Cardoso, A.R., Martins, R., Sales, M.G.F., Fortunato, E.: Laser-induced graphene-based platforms for dual biorecognition of molecules. ACS Appl. Nano Mater. 3(3), 2795–2803 (2020)
CrossRef Google scholar
[32]
Luo, S., Hoang, P., Liu, T.: Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 96, 522–531 (2016)
CrossRef Google scholar
[33]
Samouco, A., Marques, A.C., Pimentel, A., Martins, R., Fortunato, E.: Laser-induced electrodes towards low-cost flexible UV ZnO sensors. Flexible Printed Electron. 3(4), 044002 (2018)
CrossRef Google scholar
[34]
Pinheiro, T., Rosa, A., Ornelas, C., Coelho, J., Fortunato, E., Marques, A.C., Martins, R.: Influence of CO2 laser beam modelling on electronic and electrochemical properties of paper-based laser-induced graphene for disposable pH electrochemical sensors. Carbon Trends 11, 100271 (2023)
CrossRef Google scholar
[35]
Guo, L., Jiang, H., Shao, R., Zhang, Y., Xie, S., Wang, J., Li, X., Jiang, F., Chen, Q., Zhang, T., Sun, H.: Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon 50(4), 1667–1673 (2012)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s) 2024
AI Summary AI Mindmap
PDF(2347 KB)

Accesses

Citations

Detail

Sections
Recommended

/