260 fs, 403 W coherently combined fiber laser with precise high-order dispersion management
Received date: 01 Dec 2023
Accepted date: 27 Dec 2023
Copyright
An ultrafast fiber laser system comprising two coherently combined amplifier channels is reported. Within this system, each channel incorporates a rod-type fiber power amplifier, with individual operations reaching approximately 233 W. The active-locking of these coherently combined channels, followed by compression using gratings, yields an output with a pulse energy of 504 µJ and an average power of 403 W. Exceptional stability is maintained, with a 0.3% root mean square (RMS) deviation and a beam quality factor M2 < 1.2. Notably, precise dispersion management of the front-end seed light effectively compensates for the accumulated high-order dispersion in subsequent amplification stages. This strategic approach results in a significant reduction in the final output pulse duration for the coherently combined laser beam, reducing it from 488 to 260 fs after the gratings compressor, while concurrently enhancing the energy of the primary peak from 65% to 92%.
Shuangxi Peng , Zhihao Wang , Feilong Hu , Zhengyan Li , Qingbin Zhang , Peixiang Lu . 260 fs, 403 W coherently combined fiber laser with precise high-order dispersion management[J]. Frontiers of Optoelectronics, 2024 , 17(1) : 3 . DOI: 10.1007/s12200-024-00107-5
1 |
Zuo, J., Lin, X.: High-power laser systems. Laser Photonics Rev. 16, 2100741 (2022)
|
2 |
Higginson, A., Gray, R.J., King, M., Dance, R.J., Williamson, S.D.R., Butler, N.M.H., Wilson, R., Capdessus, R., Armstrong, C., Green, J.S., Hawkes, S.J., Martin, P., Wei, W.Q., Mirfayzi, S.R., Yuan, X.H., Kar, S., Borghesi, M., Clarke, R.J., Neely, D., McKenna, P.: Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. Nat. Commun. 9, 724 (2018)
|
3 |
Bergner, K., Muller, M., Klas, R., Limpert, J., Nolte, S., Tunnerman, A.: Scaling ultrashort laser pulse induced glass modifications for cleaving applications. Appl. Opt. 57, 5941–5947 (2018)
|
4 |
Chung, S.H., Mazur, E.: Surgical applications of femtosecond lasers. J. Biophotonics 2, 557–572 (2009)
|
5 |
Loescher, A., Bienert, F., Rocker, C., Graf, T., Gorjan, M., Au, J.A.D., Ahmed, M.A.: Thin-disk multipass amplifier delivering sub-400 fs pulses with excellent beam quality at an average power of 1 kW. Opt. Continuum. 1, 747–758 (2022)
|
6 |
Fan, Z.W., Qiu, J.S., Kang, Z.J., Chen, Y.Z., Ge, W.Q., Tang, X.X.: High beam quality 5 J, 200 Hz Nd:YAG laser system. Light Sci. Appl. 6, e17004 (2017)
|
7 |
Wan, P., Yang, L.M., Liu, J.: All fiber-based Yb-doped high energy, high power femtosecond fiber lasers. Opt. Expr. 21, 29854–29859 (2013)
|
8 |
Muller, M., Kienel, M., Klenke, A., Gottschall, T., Shestaev, E., Plotner, M., Limpert, J., Tunnermann, A.: 1 kW 1 mJ eight-channel ultrafast fiber laser. Opt. Lett. 41, 3439–3442 (2016)
|
9 |
Zhao, Z., Dunham, B.M., Wise, F.W.: Generation of 167 W infrared and 124 W green power from a 1.3-GHz, 1-ps rod fiber amplifier. Opt. Expr. 22, 25065–25070 (2014)
|
10 |
Zhao, Z., Dunham, B.M., Wise, F.W.: Generation of 150 W average and 1 MW peak power picosecond pulses from a rod-type fiber master oscillator power amplifier. J. Opt. Soc. Am. B 31, 33–37 (2013)
|
11 |
Zhao, Z., Sheehy, B., Minty, M.: Generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier. Opt. Expr. 25, 8138–8143 (2017)
|
12 |
Stark, H., Buldt, J., Müller, M., Klenke, A., Limpert, J.: 1 kW, 10 mJ, 120 fs coherently combined fiber CPA laser system. Opt. Lett. 46, 969–972 (2021)
|
13 |
Klenke, A., Hadrich, S., Eidam, T., Rothhardt, J., Kienel, M., Demmler, S., Gottschall, T., Limpert, J., Tunnermann, A.: 22 GW peak-power fiber chirped-pulse-amplification system. Opt. Lett. 39, 6875–6878 (2014)
|
14 |
Pedersen, M.E.V., Johansen, M.M., Olesen, A.S., Michieletto, M., Gaponenko, M., Maack, M.D.: 175 W average power from a single-core rod fiber-based chirped-pulse-amplification system. Opt. Lett. 47, 5172–5175 (2022)
|
15 |
Fathi, H., Närhi, M., Gumenyuk, R.: Towards ultimate high-power scaling: coherent beam combining of fiber lasers. In: Photonics, vol. 8. MDPI (2021)
|
16 |
Seise, E., Klenke, A., Breitkopf, S., Plotner, M., Limpert, J., Tunnermann, A.: Coherently combined fiber laser system delivering 120 µJ femtosecond pulses. Opt. Lett. 36, 439–441 (2011)
|
17 |
Seise, E., Klenke, A., Breitkopf, S., Limpert, J., Tunnermann, A.: 88 W 0.5 mJ femtosecond laser pulses from two coherently combined fiber amplifiers. Opt. Lett. 36, 3858–3860 (2011)
|
18 |
Klenke, A., Breitkopf, S., Kienel, M., Gottschall, T., Eidam, T., Hadrich, S., Rothhardt, J., Limpert, J., Tunnermann, A.: 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system. Opt. Lett. 38, 2283–2285 (2013)
|
19 |
Muller, M., Klenke, A., Steinkopff, A., Stark, H., Tunnermann, A., Limpert, J.: 3.5 kW coherently combined ultrafast fiber laser. Opt. Lett. 43, 6037–6040 (2018)
|
20 |
Muller, M., Aleshire, C., Klenke, A., Haddad, E., Legare, F., Tunnermann, A., Limpert, J.: 10.4 kW coherently combined ultrafast fiber laser. Opt. Lett. 45, 3083–3086 (2020)
|
21 |
Klenke, A., Seise, E., Demmler, S., Rothhardt, J., Breitkopf, S., Limpert, J., Tunnermann, A.: Coherently-combined two channel femtosecond fiber CPA system producing 3 mJ pulse energy. Opt. Express 19, 24280–24285 (2011)
|
22 |
Kienel, M., Muller, M., Klenke, A., Limpert, J., Tunnermann, A.: 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition. Opt. Lett. 41, 3343–3346 (2016)
|
23 |
Stark, H., Benner, M., Buldt, J., Klenke, A., Limpert, J.: Pulses of 32 mJ and 158 fs at 20-kHz repetition rate from a spatiotemporally combined fiber laser system. Opt. Lett. 48, 3007–3010 (2023)
|
24 |
Stark, H., Buldt, J., Muller, M., Klenke, A., Tunnermann, A., Limpert, J.: 23 mJ high-power fiber CPA system using electro-optically controlled divided-pulse amplification. Opt. Lett. 44, 5529–5532 (2019)
|
25 |
Hansch, T., Couillaud, B.: Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity. Opt. Commun. 35, 441–444 (1980)
|
/
〈 | 〉 |