High power tunable Raman fiber laser at 1.2 µm waveband

  • Yang Zhang 1 ,
  • Jiangming Xu , 1 ,
  • Junrui Liang 1 ,
  • Jun Ye 1,2,3 ,
  • Sicheng Li 1 ,
  • Xiaoya Ma 1 ,
  • Zhiyong Pan 1,2,3 ,
  • Jinyong Leng 1,2,3 ,
  • Pu Zhou , 1
Expand
  • 1. College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2. Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
  • 3. Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
jmxu1988@163.com
zhoupu203@163.com

Received date: 25 Nov 2023

Accepted date: 24 Dec 2023

Copyright

2024 The Author(s) 2024

Abstract

Development of a high power fiber laser at special waveband, which is difficult to achieve by conventional rare-earth-doped fibers, is a significant challenge. One of the most common methods for achieving lasing at special wavelength is Raman conversion. Phosphorus-doped fiber (PDF), due to the phosphorus-related large frequency shift Raman peak at 40 THz, is a great choice for large frequency shift Raman conversion. Here, by adopting 150 m large mode area triple-clad PDF as Raman gain medium, and a novel wavelength-selective feedback mechanism to suppress the silica-related Raman emission, we build a high power cladding-pumped Raman fiber laser at 1.2 µm waveband. A Raman signal with power up to 735.8 W at 1252.7 nm is obtained. To the best of our knowledge, this is the highest output power ever reported for fiber lasers at 1.2 µm waveband. Moreover, by tuning the wavelength of the pump source, a tunable Raman output of more than 450 W over a wavelength range of 1240.6–1252.7 nm is demonstrated. This work proves PDF’s advantage in high power large frequency shift Raman conversion with a cladding pump scheme, thus providing a good solution for a high power laser source at special waveband.

Cite this article

Yang Zhang , Jiangming Xu , Junrui Liang , Jun Ye , Sicheng Li , Xiaoya Ma , Zhiyong Pan , Jinyong Leng , Pu Zhou . High power tunable Raman fiber laser at 1.2 µm waveband[J]. Frontiers of Optoelectronics, 2024 , 17(1) : 1 . DOI: 10.1007/s12200-024-00105-7

1
Engelmann, S.A., Zhou, A., Hassan, A.M., Williamson, M.R., Jarrett, J.W., Perillo, E.P., Tomar, A., Spence, D.J., Jones, T.A., Dunn, A.K.: Diamond Raman laser and Yb fiber amplifier for in vivo multiphoton fluorescence microscopy. Biomed. Opt. Express 13(4), 1888–1898 (2022)

DOI

2
Yang, X., Zhang, L., Feng, Y., Zhu, X., Norwood, R.A., Peyghambarian, N.: Mode-locked Ho3+-doped ZBLAN fiber laser at 1.2 µm. J. Lightwave Technol. 34(18), 4266–4270 (2016)

DOI

3
Anquez, F., Courtade, E., Sivéry, A., Suret, P., Randoux, S.: A high-power tunable Raman fiber ring laser for the investigation of singlet oxygen production from direct laser excitation around 1270 nm. Opt. Express 18(22), 22928–22936 (2010)

DOI

4
Poem, E., Golenchenko, A., Davidson, O., Arenfrid, O., Finkelstein, R., Firstenberg, O.: Pulsed-pump phosphorus-doped fiber Raman amplifier around 1260 nm for applications in quantum non-linear optics. Opt. Express 28(22), 32738–32749 (2020)

DOI

5
Wanner, M., Avram, M., Gagnon, D., Mihm, M.C. Jr., Zurakowski, D., Watanabe, K., Tannous, Z., Anderson, R.R., Manstein, D.: Effects of non-invasive, 1,210 nm laser exposure on adipose tissue: results of a human pilot study. Lasers Surg. Med. 41(6), 401–407 (2009)

DOI

6
Murray, R.T., Chandran, A.M., Battle, R.A., Runcorn, T.H., Schunemann, P.G., Zawilski, K.T., Guha, S., Taylor, J.R.: Seeded optical parametric generation in CdSiP2 pumped by a Raman fiber amplifier at 1.24 µm. Opt. Lett. 46(9), 2039–2042 (2021)

DOI

7
Chandran, A.M., Runcorn, T.H., Murray, R.T., Taylor, J.R.: Nanosecond pulsed 620 nm source by frequency-doubling a phosphosilicate Raman fiber amplifier. Opt. Lett. 44(24), 6025–6028 (2019)

DOI

8
Yang, X., Bai, Z., Chen, D., Chen, W., Feng, Y., Mildren, R.P.: Widely-tunable single-frequency diamond Raman laser. Opt. Express 29(18), 29449–29457 (2021)

DOI

9
Wu, H., Wang, W., Hu, B., Li, Y., Tian, K., Ma, R., Li, C., Liu, J., Yao, J., Liang, H.: Widely tunable continuous-wave visible and mid-infrared light generation based on a dual-wavelength switchable and tunable random Raman fiber laser. Photon. Res. 11(5), 808–816 (2023)

DOI

10
Mogg, S., Chitica, N., Schatz, R., Hammar, M.: Properties of highly strained InGaAs/GaAs quantum wells for 1.2-µm laser diodes. Appl. Phys. Lett. 81(13), 2334–2336 (2002)

DOI

11
Möller, C., Fuchs, C., Berger, C., Ruiz Perez, A., Koch, M., Hader, J., Moloney, J.V., Koch, S.W., Stolz, W.: Type-II vertical-external-cavity surface-emitting laser with Watt level output powers at 1.2 µm. Appl. Phys. Lett. 108(7), 071102 (2016)

DOI

12
Liu, Y., Zhu, C., Sun, Y., Mildren, R.P., Bai, Z., Zhang, B., Chen, W., Chen, D., Li, M., Yang, X., Feng, Y.: High-power free-running single-longitudinal-mode diamond Raman laser enabled by suppressing parasitic stimulated Brillouin scattering. High Power Laser Sci. Eng. 11, e72 (2023)

DOI

13
Sun, Y., Li, M., Kitzler, O., Mildren, R.P., Bai, Z., Zhang, H., Lu, J., Feng, Y., Yang, X.: Stable high-efficiency continuouswave diamond Raman laser at 1178 nm. Laser Phys. Lett. 19(12), 125001 (2022)

DOI

14
Vatnik, I.D., Churkin, D.V., Babin, S.A., Turitsyn, S.K.: Cascaded random distributed feedback Raman fiber laser operating at 1.2 µm. Opt. Express 19(19), 18486–18494 (2011)

DOI

15
Zhang, H., Xiao, H., Zhou, P., Wang, X., Xu, X.: High-power random distributed feedback Raman fiber laser operating at 1.2-µm. Chin. Opt. Lett. 12(Suppl), S21410 (2014)

DOI

16
Antipov, S., Sabella, A., Williams, R.J., Kitzler, O., Spence, D.J., Mildren, R.P.: 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2 = 15 beam. Opt. Lett. 44(10), 2506–2509 (2019)

DOI

17
Yang, X., Zhang, L., Zhu, X., Feng, Y.: Wavelength-tunable, dual-wavelength Q-switched Ho3+-doped ZBLAN fiber laser at 12 µm. Appl. Phys. B 124(10), 198 (2018)

DOI

18
Thipparapu, N.K., Wang, Y., Wang, S., Umnikov, A.A., Barua, P., Sahu, J.K.: Bi-doped fiber amplifiers and lasers. Opt. Mater. Express 9(6), 2446–2465 (2019)

DOI

19
Xu, C., Li, X., Shen, Y., Zhang, J., Jia, S., Farrell, G., Wang, S., Wang, P.: Laser operation at 1.2 µm in Ho3+-doped ZBYA glass fibers. Opt. Lett. 48(12), 3263–3266 (2023)

DOI

20
Supradeepa, V.R., Nicholson, J.W.: Power scaling of high-efficiency 1.5 µm cascaded Raman fiber lasers. Opt. Lett. 38(14), 2538–2541 (2013)

DOI

21
Zhang, L., Dong, J., Feng, Y.: High-power and high-order random Raman fiber lasers. IEEE J. Sel. Top. Quantum Electron. 24(3), 1400106 (2018)

DOI

22
Wu, H., Han, B., Liu, Y.: Tunable narrowband cascaded random Raman fiber laser. Opt. Express 29(14), 21539–21550 (2021)

DOI

23
Deheri, R., Dash, S., Supradeepa, V.R., Balaswamy, V.: Cascaded Raman fiber lasers with ultrahigh spectral purity. Opt. Lett. 47(14), 3499–3502 (2022)

DOI

24
de Oliveira, M., Aitken, B., Eckert, H.: Structure of P2O5-SiO2 pure network former glasses studied by solid state NMR spectroscopy. J. Phys. Chem. C 122(34), 19807–19815 (2018)

DOI

25
Shcheblanov, N.S., Giacomazzi, L., Povarnitsyn, M.E., Kohara, S., Martin-Samos, L., Mountjoy, G., Newport, R.J., Haworth, R.C., Richard, N., Ollier, N.: Vibrational and structural properties of P2O5 glass: advances from a combined modeling approach. Phys. Rev. B 100(13), 134309 (2019)

DOI

26
Song, J., Xu, J., Zhang, Y., Ye, J., Zhou, P.: Phosphosilicate fiber-based dual-wavelength random fiber laser with flexible power proportion and high spectral purity. Opt. Express 27(16), 23095–23102 (2019)

DOI

27
Wu, H., Wang, W., Hu, B., Ma, R., Liu, J., Liang, H.: Multi-color switchable visible light source generated via nonlinear frequency conversion of a random fiber laser. Opt. Express 30(25), 44785–44797 (2022)

DOI

28
Dianov, E.M., Grekov, M.V., Bufetov, I.A., Vasiliev, S.A., Medvedkov, O.I., Plotnichenko, V.G., Koltashev, V.V., Belov, A.V., Bubnov, M.M., Semjonov, S.L., Prokhorov, A.M.: CW high power 1.24 µm and 1.48 µm Raman lasers based on low loss phosphosilicate fibre. Electron. Lett. 33(18), 1542–1544 (1997)

DOI

29
Dianov, E.M., Prokhorov, A.M.: Medium-power CW Raman fiber lasers. IEEE J. Sel. Top. Quantum Electron. 6(6), 1022–1028 (2000)

DOI

30
Kim, N.S., Prabhu, M., Li, C., Song, J., Ueda, K.: 1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral. Opt. Commun. 176(1–3), 219–222 (2000)

DOI

31
Sim, S.K., Lim, H.C., Lee, L.W., Chia, L.C., Wu, R.F., Cristiani, I., Rini, M., Degiorgio, V.: High-power cascaded Raman fibre laser using phosphosilicate fiber. Electron. Lett. 40(12), 738–739 (2004)

DOI

32
Luo, Z., Cai, Z., Huang, J., Ye, C., Huang, C., Xu, H., Zhong, W.D.: Stable and spacing-adjustable multiwavelength Raman fiber laser based on mixed-cascaded phosphosilicate fiber Raman linear cavity. Opt. Lett. 33(14), 1602–1604 (2008)

DOI

33
Babin, S.A., Vatnik, I.D., Laptev, AYu., Bubnov, M.M., Dianov, E.M.: High-efficiency cascaded Raman fiber laser with random distributed feedback. Opt. Express 22(21), 24929–24934 (2014)

DOI

34
Lobach, I.A., Kablukov, S.I., Babin, S.A.: Linearly polarized cascaded Raman fiber laser with random distributed feedback operating beyond 1.5 µm. Opt. Lett. 42(18), 3526–3529 (2017)

DOI

35
Kharenko, D.S., Efremov, V.D., Evmenova, E.A., Babin, S.A.: Generation of Raman dissipative solitons near 1.3 microns in a phosphosilicate-fiber cavity. Opt. Express 26(12), 15084–15089 (2018)

DOI

36
Xiong, Z., Moore, N., Li, Z.G., Lim, G.C.: 10-W Raman fiber lasers at 1248 nm using phosphosilicate fibers. J. Lightwave Technol. 21(10), 2377–2381 (2003)

DOI

37
Dong, J., Zhang, L., Zhou, J., Pan, W., Gu, X., Feng, Y.: More than 200 W random Raman fiber laser with ultra-short cavity length based on phosphosilicate fiber. Opt. Lett. 44(7), 1801–1804 (2019)

DOI

38
Ye, J., Zhang, Y., Xu, J., Song, J., Yao, T., Xiao, H., Leng, J., Zhou, P.: Investigations on the extreme frequency shift of phosphosilicate random fiber laser. J. Lightwave Technol. 38(14), 3737–3744 (2020)

DOI

39
Ye, J., Fan, C., Xu, J., Xiao, H., Leng, J., Zhou, P.: 2-kW-level superfluorescent fiber source with flexible wavelength and linewidth tunable characteristics. High Power Laser Sci. Eng. 9, e55 (2021)

DOI

40
Cheng, X., Cui, S., Zeng, X., Zhou, J., Feng, Y.: Spectral and RIN properties of a single-frequency Raman fiber amplifier copumped by ASE source. Opt. Express 29(10), 15764–15771 (2021)

DOI

41
Zhang, Y., Song, J., Ye, J., Xu, J., Yao, T., Zhou, P.: Tunable random Raman fiber laser at 1.7 µm region with high spectral purity. Opt. Express 27(20), 28800–28807 (2019)

DOI

42
Ye, J., Ma, X., Zhang, Y., Xu, J., Zhang, H., Yao, T., Leng, J., Zhou, P.: From spectral broadening to recompression: dynamics of incoherent optical waves propagating in the fiber. PhotoniX 2(1), 15 (2021)

DOI

43
Balaswamy, V., Ramachandran, S., Supradeepa, V.R.: High-power, cascaded random Raman fiber laser with near complete conversion over wide wavelength and power tuning. Opt. Express 27(7), 9725–9732 (2019)

DOI

44
Zhang, Y., Xu, J., Ye, J., Song, J., Yao, T., Zhou, P.: Ultralow-quantum-defect Raman laser based on the boson peak in phosphosilicate fiber. Photon. Res. 8(7), 1155–1160 (2020)

DOI

45
Ma, X., Xu, J., Ye, J., Zhang, Y., Huang, L., Yao, T., Leng, J., Pan, Z., Zhou, P.: Cladding-pumped Raman fiber laser with 0.78% quantum defect enabled by phosphorus-doped fiber. High Power Laser Sci. Eng. 10, e8 (2022)

DOI

46
Wang, M., Wang, Z., Liu, L., Hu, Q., Xiao, H., Xu, X.: Effective suppression of stimulated Raman scattering in half 10 kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings. Photon. Res. 7(2), 167–171 (2019)

DOI

Outlines

/