High power tunable Raman fiber laser at 1.2 µm waveband
Received date: 25 Nov 2023
Accepted date: 24 Dec 2023
Copyright
Development of a high power fiber laser at special waveband, which is difficult to achieve by conventional rare-earth-doped fibers, is a significant challenge. One of the most common methods for achieving lasing at special wavelength is Raman conversion. Phosphorus-doped fiber (PDF), due to the phosphorus-related large frequency shift Raman peak at 40 THz, is a great choice for large frequency shift Raman conversion. Here, by adopting 150 m large mode area triple-clad PDF as Raman gain medium, and a novel wavelength-selective feedback mechanism to suppress the silica-related Raman emission, we build a high power cladding-pumped Raman fiber laser at 1.2 µm waveband. A Raman signal with power up to 735.8 W at 1252.7 nm is obtained. To the best of our knowledge, this is the highest output power ever reported for fiber lasers at 1.2 µm waveband. Moreover, by tuning the wavelength of the pump source, a tunable Raman output of more than 450 W over a wavelength range of 1240.6–1252.7 nm is demonstrated. This work proves PDF’s advantage in high power large frequency shift Raman conversion with a cladding pump scheme, thus providing a good solution for a high power laser source at special waveband.
Yang Zhang , Jiangming Xu , Junrui Liang , Jun Ye , Sicheng Li , Xiaoya Ma , Zhiyong Pan , Jinyong Leng , Pu Zhou . High power tunable Raman fiber laser at 1.2 µm waveband[J]. Frontiers of Optoelectronics, 2024 , 17(1) : 1 . DOI: 10.1007/s12200-024-00105-7
1 |
Engelmann, S.A., Zhou, A., Hassan, A.M., Williamson, M.R., Jarrett, J.W., Perillo, E.P., Tomar, A., Spence, D.J., Jones, T.A., Dunn, A.K.: Diamond Raman laser and Yb fiber amplifier for in vivo multiphoton fluorescence microscopy. Biomed. Opt. Express 13(4), 1888–1898 (2022)
|
2 |
Yang, X., Zhang, L., Feng, Y., Zhu, X., Norwood, R.A., Peyghambarian, N.: Mode-locked Ho3+-doped ZBLAN fiber laser at 1.2 µm. J. Lightwave Technol. 34(18), 4266–4270 (2016)
|
3 |
Anquez, F., Courtade, E., Sivéry, A., Suret, P., Randoux, S.: A high-power tunable Raman fiber ring laser for the investigation of singlet oxygen production from direct laser excitation around 1270 nm. Opt. Express 18(22), 22928–22936 (2010)
|
4 |
Poem, E., Golenchenko, A., Davidson, O., Arenfrid, O., Finkelstein, R., Firstenberg, O.: Pulsed-pump phosphorus-doped fiber Raman amplifier around 1260 nm for applications in quantum non-linear optics. Opt. Express 28(22), 32738–32749 (2020)
|
5 |
Wanner, M., Avram, M., Gagnon, D., Mihm, M.C. Jr., Zurakowski, D., Watanabe, K., Tannous, Z., Anderson, R.R., Manstein, D.: Effects of non-invasive, 1,210 nm laser exposure on adipose tissue: results of a human pilot study. Lasers Surg. Med. 41(6), 401–407 (2009)
|
6 |
Murray, R.T., Chandran, A.M., Battle, R.A., Runcorn, T.H., Schunemann, P.G., Zawilski, K.T., Guha, S., Taylor, J.R.: Seeded optical parametric generation in CdSiP2 pumped by a Raman fiber amplifier at 1.24 µm. Opt. Lett. 46(9), 2039–2042 (2021)
|
7 |
Chandran, A.M., Runcorn, T.H., Murray, R.T., Taylor, J.R.: Nanosecond pulsed 620 nm source by frequency-doubling a phosphosilicate Raman fiber amplifier. Opt. Lett. 44(24), 6025–6028 (2019)
|
8 |
Yang, X., Bai, Z., Chen, D., Chen, W., Feng, Y., Mildren, R.P.: Widely-tunable single-frequency diamond Raman laser. Opt. Express 29(18), 29449–29457 (2021)
|
9 |
Wu, H., Wang, W., Hu, B., Li, Y., Tian, K., Ma, R., Li, C., Liu, J., Yao, J., Liang, H.: Widely tunable continuous-wave visible and mid-infrared light generation based on a dual-wavelength switchable and tunable random Raman fiber laser. Photon. Res. 11(5), 808–816 (2023)
|
10 |
Mogg, S., Chitica, N., Schatz, R., Hammar, M.: Properties of highly strained InGaAs/GaAs quantum wells for 1.2-µm laser diodes. Appl. Phys. Lett. 81(13), 2334–2336 (2002)
|
11 |
Möller, C., Fuchs, C., Berger, C., Ruiz Perez, A., Koch, M., Hader, J., Moloney, J.V., Koch, S.W., Stolz, W.: Type-II vertical-external-cavity surface-emitting laser with Watt level output powers at 1.2 µm. Appl. Phys. Lett. 108(7), 071102 (2016)
|
12 |
Liu, Y., Zhu, C., Sun, Y., Mildren, R.P., Bai, Z., Zhang, B., Chen, W., Chen, D., Li, M., Yang, X., Feng, Y.: High-power free-running single-longitudinal-mode diamond Raman laser enabled by suppressing parasitic stimulated Brillouin scattering. High Power Laser Sci. Eng. 11, e72 (2023)
|
13 |
Sun, Y., Li, M., Kitzler, O., Mildren, R.P., Bai, Z., Zhang, H., Lu, J., Feng, Y., Yang, X.: Stable high-efficiency continuouswave diamond Raman laser at 1178 nm. Laser Phys. Lett. 19(12), 125001 (2022)
|
14 |
Vatnik, I.D., Churkin, D.V., Babin, S.A., Turitsyn, S.K.: Cascaded random distributed feedback Raman fiber laser operating at 1.2 µm. Opt. Express 19(19), 18486–18494 (2011)
|
15 |
Zhang, H., Xiao, H., Zhou, P., Wang, X., Xu, X.: High-power random distributed feedback Raman fiber laser operating at 1.2-µm. Chin. Opt. Lett. 12(Suppl), S21410 (2014)
|
16 |
Antipov, S., Sabella, A., Williams, R.J., Kitzler, O., Spence, D.J., Mildren, R.P.: 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2 = 15 beam. Opt. Lett. 44(10), 2506–2509 (2019)
|
17 |
Yang, X., Zhang, L., Zhu, X., Feng, Y.: Wavelength-tunable, dual-wavelength Q-switched Ho3+-doped ZBLAN fiber laser at 12 µm. Appl. Phys. B 124(10), 198 (2018)
|
18 |
Thipparapu, N.K., Wang, Y., Wang, S., Umnikov, A.A., Barua, P., Sahu, J.K.: Bi-doped fiber amplifiers and lasers. Opt. Mater. Express 9(6), 2446–2465 (2019)
|
19 |
Xu, C., Li, X., Shen, Y., Zhang, J., Jia, S., Farrell, G., Wang, S., Wang, P.: Laser operation at 1.2 µm in Ho3+-doped ZBYA glass fibers. Opt. Lett. 48(12), 3263–3266 (2023)
|
20 |
Supradeepa, V.R., Nicholson, J.W.: Power scaling of high-efficiency 1.5 µm cascaded Raman fiber lasers. Opt. Lett. 38(14), 2538–2541 (2013)
|
21 |
Zhang, L., Dong, J., Feng, Y.: High-power and high-order random Raman fiber lasers. IEEE J. Sel. Top. Quantum Electron. 24(3), 1400106 (2018)
|
22 |
Wu, H., Han, B., Liu, Y.: Tunable narrowband cascaded random Raman fiber laser. Opt. Express 29(14), 21539–21550 (2021)
|
23 |
Deheri, R., Dash, S., Supradeepa, V.R., Balaswamy, V.: Cascaded Raman fiber lasers with ultrahigh spectral purity. Opt. Lett. 47(14), 3499–3502 (2022)
|
24 |
de Oliveira, M., Aitken, B., Eckert, H.: Structure of P2O5-SiO2 pure network former glasses studied by solid state NMR spectroscopy. J. Phys. Chem. C 122(34), 19807–19815 (2018)
|
25 |
Shcheblanov, N.S., Giacomazzi, L., Povarnitsyn, M.E., Kohara, S., Martin-Samos, L., Mountjoy, G., Newport, R.J., Haworth, R.C., Richard, N., Ollier, N.: Vibrational and structural properties of P2O5 glass: advances from a combined modeling approach. Phys. Rev. B 100(13), 134309 (2019)
|
26 |
Song, J., Xu, J., Zhang, Y., Ye, J., Zhou, P.: Phosphosilicate fiber-based dual-wavelength random fiber laser with flexible power proportion and high spectral purity. Opt. Express 27(16), 23095–23102 (2019)
|
27 |
Wu, H., Wang, W., Hu, B., Ma, R., Liu, J., Liang, H.: Multi-color switchable visible light source generated via nonlinear frequency conversion of a random fiber laser. Opt. Express 30(25), 44785–44797 (2022)
|
28 |
Dianov, E.M., Grekov, M.V., Bufetov, I.A., Vasiliev, S.A., Medvedkov, O.I., Plotnichenko, V.G., Koltashev, V.V., Belov, A.V., Bubnov, M.M., Semjonov, S.L., Prokhorov, A.M.: CW high power 1.24 µm and 1.48 µm Raman lasers based on low loss phosphosilicate fibre. Electron. Lett. 33(18), 1542–1544 (1997)
|
29 |
Dianov, E.M., Prokhorov, A.M.: Medium-power CW Raman fiber lasers. IEEE J. Sel. Top. Quantum Electron. 6(6), 1022–1028 (2000)
|
30 |
Kim, N.S., Prabhu, M., Li, C., Song, J., Ueda, K.: 1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral. Opt. Commun. 176(1–3), 219–222 (2000)
|
31 |
Sim, S.K., Lim, H.C., Lee, L.W., Chia, L.C., Wu, R.F., Cristiani, I., Rini, M., Degiorgio, V.: High-power cascaded Raman fibre laser using phosphosilicate fiber. Electron. Lett. 40(12), 738–739 (2004)
|
32 |
Luo, Z., Cai, Z., Huang, J., Ye, C., Huang, C., Xu, H., Zhong, W.D.: Stable and spacing-adjustable multiwavelength Raman fiber laser based on mixed-cascaded phosphosilicate fiber Raman linear cavity. Opt. Lett. 33(14), 1602–1604 (2008)
|
33 |
Babin, S.A., Vatnik, I.D., Laptev, AYu., Bubnov, M.M., Dianov, E.M.: High-efficiency cascaded Raman fiber laser with random distributed feedback. Opt. Express 22(21), 24929–24934 (2014)
|
34 |
Lobach, I.A., Kablukov, S.I., Babin, S.A.: Linearly polarized cascaded Raman fiber laser with random distributed feedback operating beyond 1.5 µm. Opt. Lett. 42(18), 3526–3529 (2017)
|
35 |
Kharenko, D.S., Efremov, V.D., Evmenova, E.A., Babin, S.A.: Generation of Raman dissipative solitons near 1.3 microns in a phosphosilicate-fiber cavity. Opt. Express 26(12), 15084–15089 (2018)
|
36 |
Xiong, Z., Moore, N., Li, Z.G., Lim, G.C.: 10-W Raman fiber lasers at 1248 nm using phosphosilicate fibers. J. Lightwave Technol. 21(10), 2377–2381 (2003)
|
37 |
Dong, J., Zhang, L., Zhou, J., Pan, W., Gu, X., Feng, Y.: More than 200 W random Raman fiber laser with ultra-short cavity length based on phosphosilicate fiber. Opt. Lett. 44(7), 1801–1804 (2019)
|
38 |
Ye, J., Zhang, Y., Xu, J., Song, J., Yao, T., Xiao, H., Leng, J., Zhou, P.: Investigations on the extreme frequency shift of phosphosilicate random fiber laser. J. Lightwave Technol. 38(14), 3737–3744 (2020)
|
39 |
Ye, J., Fan, C., Xu, J., Xiao, H., Leng, J., Zhou, P.: 2-kW-level superfluorescent fiber source with flexible wavelength and linewidth tunable characteristics. High Power Laser Sci. Eng. 9, e55 (2021)
|
40 |
Cheng, X., Cui, S., Zeng, X., Zhou, J., Feng, Y.: Spectral and RIN properties of a single-frequency Raman fiber amplifier copumped by ASE source. Opt. Express 29(10), 15764–15771 (2021)
|
41 |
Zhang, Y., Song, J., Ye, J., Xu, J., Yao, T., Zhou, P.: Tunable random Raman fiber laser at 1.7 µm region with high spectral purity. Opt. Express 27(20), 28800–28807 (2019)
|
42 |
Ye, J., Ma, X., Zhang, Y., Xu, J., Zhang, H., Yao, T., Leng, J., Zhou, P.: From spectral broadening to recompression: dynamics of incoherent optical waves propagating in the fiber. PhotoniX 2(1), 15 (2021)
|
43 |
Balaswamy, V., Ramachandran, S., Supradeepa, V.R.: High-power, cascaded random Raman fiber laser with near complete conversion over wide wavelength and power tuning. Opt. Express 27(7), 9725–9732 (2019)
|
44 |
Zhang, Y., Xu, J., Ye, J., Song, J., Yao, T., Zhou, P.: Ultralow-quantum-defect Raman laser based on the boson peak in phosphosilicate fiber. Photon. Res. 8(7), 1155–1160 (2020)
|
45 |
Ma, X., Xu, J., Ye, J., Zhang, Y., Huang, L., Yao, T., Leng, J., Pan, Z., Zhou, P.: Cladding-pumped Raman fiber laser with 0.78% quantum defect enabled by phosphorus-doped fiber. High Power Laser Sci. Eng. 10, e8 (2022)
|
46 |
Wang, M., Wang, Z., Liu, L., Hu, Q., Xiao, H., Xu, X.: Effective suppression of stimulated Raman scattering in half 10 kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings. Photon. Res. 7(2), 167–171 (2019)
|
/
〈 | 〉 |