High power tunable Raman fiber laser at 1.2 µm waveband

Yang Zhang, Jiangming Xu, Junrui Liang, Jun Ye, Sicheng Li, Xiaoya Ma, Zhiyong Pan, Jinyong Leng, Pu Zhou

PDF(2429 KB)
PDF(2429 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (1) : 1. DOI: 10.1007/s12200-024-00105-7
RESEARCH ARTICLE

High power tunable Raman fiber laser at 1.2 µm waveband

Author information +
History +

Abstract

Development of a high power fiber laser at special waveband, which is difficult to achieve by conventional rare-earth-doped fibers, is a significant challenge. One of the most common methods for achieving lasing at special wavelength is Raman conversion. Phosphorus-doped fiber (PDF), due to the phosphorus-related large frequency shift Raman peak at 40 THz, is a great choice for large frequency shift Raman conversion. Here, by adopting 150 m large mode area triple-clad PDF as Raman gain medium, and a novel wavelength-selective feedback mechanism to suppress the silica-related Raman emission, we build a high power cladding-pumped Raman fiber laser at 1.2 µm waveband. A Raman signal with power up to 735.8 W at 1252.7 nm is obtained. To the best of our knowledge, this is the highest output power ever reported for fiber lasers at 1.2 µm waveband. Moreover, by tuning the wavelength of the pump source, a tunable Raman output of more than 450 W over a wavelength range of 1240.6–1252.7 nm is demonstrated. This work proves PDF’s advantage in high power large frequency shift Raman conversion with a cladding pump scheme, thus providing a good solution for a high power laser source at special waveband.

Graphical abstract

Keywords

Phosphosilicate fiber / Raman fiber laser / 1.2 µm waveband / Wavelength tunable

Cite this article

Download citation ▾
Yang Zhang, Jiangming Xu, Junrui Liang, Jun Ye, Sicheng Li, Xiaoya Ma, Zhiyong Pan, Jinyong Leng, Pu Zhou. High power tunable Raman fiber laser at 1.2 µm waveband. Front. Optoelectron., 2024, 17(1): 1 https://doi.org/10.1007/s12200-024-00105-7

References

[1]
Engelmann, S.A., Zhou, A., Hassan, A.M., Williamson, M.R., Jarrett, J.W., Perillo, E.P., Tomar, A., Spence, D.J., Jones, T.A., Dunn, A.K.: Diamond Raman laser and Yb fiber amplifier for in vivo multiphoton fluorescence microscopy. Biomed. Opt. Express 13(4), 1888–1898 (2022)
CrossRef Google scholar
[2]
Yang, X., Zhang, L., Feng, Y., Zhu, X., Norwood, R.A., Peyghambarian, N.: Mode-locked Ho3+-doped ZBLAN fiber laser at 1.2 µm. J. Lightwave Technol. 34(18), 4266–4270 (2016)
CrossRef Google scholar
[3]
Anquez, F., Courtade, E., Sivéry, A., Suret, P., Randoux, S.: A high-power tunable Raman fiber ring laser for the investigation of singlet oxygen production from direct laser excitation around 1270 nm. Opt. Express 18(22), 22928–22936 (2010)
CrossRef Google scholar
[4]
Poem, E., Golenchenko, A., Davidson, O., Arenfrid, O., Finkelstein, R., Firstenberg, O.: Pulsed-pump phosphorus-doped fiber Raman amplifier around 1260 nm for applications in quantum non-linear optics. Opt. Express 28(22), 32738–32749 (2020)
CrossRef Google scholar
[5]
Wanner, M., Avram, M., Gagnon, D., Mihm, M.C. Jr., Zurakowski, D., Watanabe, K., Tannous, Z., Anderson, R.R., Manstein, D.: Effects of non-invasive, 1,210 nm laser exposure on adipose tissue: results of a human pilot study. Lasers Surg. Med. 41(6), 401–407 (2009)
CrossRef Google scholar
[6]
Murray, R.T., Chandran, A.M., Battle, R.A., Runcorn, T.H., Schunemann, P.G., Zawilski, K.T., Guha, S., Taylor, J.R.: Seeded optical parametric generation in CdSiP2 pumped by a Raman fiber amplifier at 1.24 µm. Opt. Lett. 46(9), 2039–2042 (2021)
CrossRef Google scholar
[7]
Chandran, A.M., Runcorn, T.H., Murray, R.T., Taylor, J.R.: Nanosecond pulsed 620 nm source by frequency-doubling a phosphosilicate Raman fiber amplifier. Opt. Lett. 44(24), 6025–6028 (2019)
CrossRef Google scholar
[8]
Yang, X., Bai, Z., Chen, D., Chen, W., Feng, Y., Mildren, R.P.: Widely-tunable single-frequency diamond Raman laser. Opt. Express 29(18), 29449–29457 (2021)
CrossRef Google scholar
[9]
Wu, H., Wang, W., Hu, B., Li, Y., Tian, K., Ma, R., Li, C., Liu, J., Yao, J., Liang, H.: Widely tunable continuous-wave visible and mid-infrared light generation based on a dual-wavelength switchable and tunable random Raman fiber laser. Photon. Res. 11(5), 808–816 (2023)
CrossRef Google scholar
[10]
Mogg, S., Chitica, N., Schatz, R., Hammar, M.: Properties of highly strained InGaAs/GaAs quantum wells for 1.2-µm laser diodes. Appl. Phys. Lett. 81(13), 2334–2336 (2002)
CrossRef Google scholar
[11]
Möller, C., Fuchs, C., Berger, C., Ruiz Perez, A., Koch, M., Hader, J., Moloney, J.V., Koch, S.W., Stolz, W.: Type-II vertical-external-cavity surface-emitting laser with Watt level output powers at 1.2 µm. Appl. Phys. Lett. 108(7), 071102 (2016)
CrossRef Google scholar
[12]
Liu, Y., Zhu, C., Sun, Y., Mildren, R.P., Bai, Z., Zhang, B., Chen, W., Chen, D., Li, M., Yang, X., Feng, Y.: High-power free-running single-longitudinal-mode diamond Raman laser enabled by suppressing parasitic stimulated Brillouin scattering. High Power Laser Sci. Eng. 11, e72 (2023)
CrossRef Google scholar
[13]
Sun, Y., Li, M., Kitzler, O., Mildren, R.P., Bai, Z., Zhang, H., Lu, J., Feng, Y., Yang, X.: Stable high-efficiency continuouswave diamond Raman laser at 1178 nm. Laser Phys. Lett. 19(12), 125001 (2022)
CrossRef Google scholar
[14]
Vatnik, I.D., Churkin, D.V., Babin, S.A., Turitsyn, S.K.: Cascaded random distributed feedback Raman fiber laser operating at 1.2 µm. Opt. Express 19(19), 18486–18494 (2011)
CrossRef Google scholar
[15]
Zhang, H., Xiao, H., Zhou, P., Wang, X., Xu, X.: High-power random distributed feedback Raman fiber laser operating at 1.2-µm. Chin. Opt. Lett. 12(Suppl), S21410 (2014)
CrossRef Google scholar
[16]
Antipov, S., Sabella, A., Williams, R.J., Kitzler, O., Spence, D.J., Mildren, R.P.: 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2 = 15 beam. Opt. Lett. 44(10), 2506–2509 (2019)
CrossRef Google scholar
[17]
Yang, X., Zhang, L., Zhu, X., Feng, Y.: Wavelength-tunable, dual-wavelength Q-switched Ho3+-doped ZBLAN fiber laser at 12 µm. Appl. Phys. B 124(10), 198 (2018)
CrossRef Google scholar
[18]
Thipparapu, N.K., Wang, Y., Wang, S., Umnikov, A.A., Barua, P., Sahu, J.K.: Bi-doped fiber amplifiers and lasers. Opt. Mater. Express 9(6), 2446–2465 (2019)
CrossRef Google scholar
[19]
Xu, C., Li, X., Shen, Y., Zhang, J., Jia, S., Farrell, G., Wang, S., Wang, P.: Laser operation at 1.2 µm in Ho3+-doped ZBYA glass fibers. Opt. Lett. 48(12), 3263–3266 (2023)
CrossRef Google scholar
[20]
Supradeepa, V.R., Nicholson, J.W.: Power scaling of high-efficiency 1.5 µm cascaded Raman fiber lasers. Opt. Lett. 38(14), 2538–2541 (2013)
CrossRef Google scholar
[21]
Zhang, L., Dong, J., Feng, Y.: High-power and high-order random Raman fiber lasers. IEEE J. Sel. Top. Quantum Electron. 24(3), 1400106 (2018)
CrossRef Google scholar
[22]
Wu, H., Han, B., Liu, Y.: Tunable narrowband cascaded random Raman fiber laser. Opt. Express 29(14), 21539–21550 (2021)
CrossRef Google scholar
[23]
Deheri, R., Dash, S., Supradeepa, V.R., Balaswamy, V.: Cascaded Raman fiber lasers with ultrahigh spectral purity. Opt. Lett. 47(14), 3499–3502 (2022)
CrossRef Google scholar
[24]
de Oliveira, M., Aitken, B., Eckert, H.: Structure of P2O5-SiO2 pure network former glasses studied by solid state NMR spectroscopy. J. Phys. Chem. C 122(34), 19807–19815 (2018)
CrossRef Google scholar
[25]
Shcheblanov, N.S., Giacomazzi, L., Povarnitsyn, M.E., Kohara, S., Martin-Samos, L., Mountjoy, G., Newport, R.J., Haworth, R.C., Richard, N., Ollier, N.: Vibrational and structural properties of P2O5 glass: advances from a combined modeling approach. Phys. Rev. B 100(13), 134309 (2019)
CrossRef Google scholar
[26]
Song, J., Xu, J., Zhang, Y., Ye, J., Zhou, P.: Phosphosilicate fiber-based dual-wavelength random fiber laser with flexible power proportion and high spectral purity. Opt. Express 27(16), 23095–23102 (2019)
CrossRef Google scholar
[27]
Wu, H., Wang, W., Hu, B., Ma, R., Liu, J., Liang, H.: Multi-color switchable visible light source generated via nonlinear frequency conversion of a random fiber laser. Opt. Express 30(25), 44785–44797 (2022)
CrossRef Google scholar
[28]
Dianov, E.M., Grekov, M.V., Bufetov, I.A., Vasiliev, S.A., Medvedkov, O.I., Plotnichenko, V.G., Koltashev, V.V., Belov, A.V., Bubnov, M.M., Semjonov, S.L., Prokhorov, A.M.: CW high power 1.24 µm and 1.48 µm Raman lasers based on low loss phosphosilicate fibre. Electron. Lett. 33(18), 1542–1544 (1997)
CrossRef Google scholar
[29]
Dianov, E.M., Prokhorov, A.M.: Medium-power CW Raman fiber lasers. IEEE J. Sel. Top. Quantum Electron. 6(6), 1022–1028 (2000)
CrossRef Google scholar
[30]
Kim, N.S., Prabhu, M., Li, C., Song, J., Ueda, K.: 1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral. Opt. Commun. 176(1–3), 219–222 (2000)
CrossRef Google scholar
[31]
Sim, S.K., Lim, H.C., Lee, L.W., Chia, L.C., Wu, R.F., Cristiani, I., Rini, M., Degiorgio, V.: High-power cascaded Raman fibre laser using phosphosilicate fiber. Electron. Lett. 40(12), 738–739 (2004)
CrossRef Google scholar
[32]
Luo, Z., Cai, Z., Huang, J., Ye, C., Huang, C., Xu, H., Zhong, W.D.: Stable and spacing-adjustable multiwavelength Raman fiber laser based on mixed-cascaded phosphosilicate fiber Raman linear cavity. Opt. Lett. 33(14), 1602–1604 (2008)
CrossRef Google scholar
[33]
Babin, S.A., Vatnik, I.D., Laptev, AYu., Bubnov, M.M., Dianov, E.M.: High-efficiency cascaded Raman fiber laser with random distributed feedback. Opt. Express 22(21), 24929–24934 (2014)
CrossRef Google scholar
[34]
Lobach, I.A., Kablukov, S.I., Babin, S.A.: Linearly polarized cascaded Raman fiber laser with random distributed feedback operating beyond 1.5 µm. Opt. Lett. 42(18), 3526–3529 (2017)
CrossRef Google scholar
[35]
Kharenko, D.S., Efremov, V.D., Evmenova, E.A., Babin, S.A.: Generation of Raman dissipative solitons near 1.3 microns in a phosphosilicate-fiber cavity. Opt. Express 26(12), 15084–15089 (2018)
CrossRef Google scholar
[36]
Xiong, Z., Moore, N., Li, Z.G., Lim, G.C.: 10-W Raman fiber lasers at 1248 nm using phosphosilicate fibers. J. Lightwave Technol. 21(10), 2377–2381 (2003)
CrossRef Google scholar
[37]
Dong, J., Zhang, L., Zhou, J., Pan, W., Gu, X., Feng, Y.: More than 200 W random Raman fiber laser with ultra-short cavity length based on phosphosilicate fiber. Opt. Lett. 44(7), 1801–1804 (2019)
CrossRef Google scholar
[38]
Ye, J., Zhang, Y., Xu, J., Song, J., Yao, T., Xiao, H., Leng, J., Zhou, P.: Investigations on the extreme frequency shift of phosphosilicate random fiber laser. J. Lightwave Technol. 38(14), 3737–3744 (2020)
CrossRef Google scholar
[39]
Ye, J., Fan, C., Xu, J., Xiao, H., Leng, J., Zhou, P.: 2-kW-level superfluorescent fiber source with flexible wavelength and linewidth tunable characteristics. High Power Laser Sci. Eng. 9, e55 (2021)
CrossRef Google scholar
[40]
Cheng, X., Cui, S., Zeng, X., Zhou, J., Feng, Y.: Spectral and RIN properties of a single-frequency Raman fiber amplifier copumped by ASE source. Opt. Express 29(10), 15764–15771 (2021)
CrossRef Google scholar
[41]
Zhang, Y., Song, J., Ye, J., Xu, J., Yao, T., Zhou, P.: Tunable random Raman fiber laser at 1.7 µm region with high spectral purity. Opt. Express 27(20), 28800–28807 (2019)
CrossRef Google scholar
[42]
Ye, J., Ma, X., Zhang, Y., Xu, J., Zhang, H., Yao, T., Leng, J., Zhou, P.: From spectral broadening to recompression: dynamics of incoherent optical waves propagating in the fiber. PhotoniX 2(1), 15 (2021)
CrossRef Google scholar
[43]
Balaswamy, V., Ramachandran, S., Supradeepa, V.R.: High-power, cascaded random Raman fiber laser with near complete conversion over wide wavelength and power tuning. Opt. Express 27(7), 9725–9732 (2019)
CrossRef Google scholar
[44]
Zhang, Y., Xu, J., Ye, J., Song, J., Yao, T., Zhou, P.: Ultralow-quantum-defect Raman laser based on the boson peak in phosphosilicate fiber. Photon. Res. 8(7), 1155–1160 (2020)
CrossRef Google scholar
[45]
Ma, X., Xu, J., Ye, J., Zhang, Y., Huang, L., Yao, T., Leng, J., Pan, Z., Zhou, P.: Cladding-pumped Raman fiber laser with 0.78% quantum defect enabled by phosphorus-doped fiber. High Power Laser Sci. Eng. 10, e8 (2022)
CrossRef Google scholar
[46]
Wang, M., Wang, Z., Liu, L., Hu, Q., Xiao, H., Xu, X.: Effective suppression of stimulated Raman scattering in half 10 kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings. Photon. Res. 7(2), 167–171 (2019)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s) 2024
AI Summary AI Mindmap
PDF(2429 KB)

Accesses

Citations

Detail

Sections
Recommended

/