Transient breathing dynamics during extinction of dissipative solitons in mode-locked fiber lasers

  • Zichuan Yuan 1 ,
  • Si Luo 1,4 ,
  • Ke Dai 1 ,
  • Xiankun Yao 5 ,
  • Chenning Tao 1,4 ,
  • Qiang Ling 1,4 ,
  • Yusheng Zhang , 1,4 ,
  • Zuguang Guan 1,4 ,
  • Daru Chen 1,4 ,
  • Yudong Cui , 2,3
Expand
  • 1. Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
  • 2. State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 3. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 4. Key Laboratory of Optical Information Detection and Display Technology of Zhejiang, Zhejiang Normal University, Jinhua 321004, China
  • 5. School of Physics, Northwest University, Xi’an 710127, China
yszhang@zjnu.edu.cn
cuiyd@zju.edu.cn

Received date: 26 Oct 2023

Accepted date: 24 Dec 2023

Copyright

2024 The Author(s) 2024

Abstract

The utilization of the dispersive Fourier transformation approach has enabled comprehensive observation of the birth process of dissipative solitons in fiber lasers. However, there is still a dearth of deep understanding regarding the extinction process of dissipative solitons. In this study, we have utilized a combination of experimental and numerical techniques to thoroughly examine the breathing dynamics of dissipative solitons during the extinction process in an Er-doped mode-locked fiber laser. The results demonstrate that the transient breathing dynamics have a substantial impact on the extinction stage of both steady-state and breathing-state dissipative solitons. The duration of transient breathing exhibits a high degree of sensitivity to variations in pump power. Numerical simulations are utilized to produce analogous breathing dynamics within the framework of a model that integrates equations characterizing the population inversion in a mode-locked laser. These results corroborate the role of Q-switching instability in the onset of breathing oscillations. Furthermore, these findings offer new possibilities for the advancement of various operational frameworks for ultrafast lasers.

Cite this article

Zichuan Yuan , Si Luo , Ke Dai , Xiankun Yao , Chenning Tao , Qiang Ling , Yusheng Zhang , Zuguang Guan , Daru Chen , Yudong Cui . Transient breathing dynamics during extinction of dissipative solitons in mode-locked fiber lasers[J]. Frontiers of Optoelectronics, 2024 , 17(1) : 2 . DOI: 10.1007/s12200-024-00106-6

1
Hasegawa, A.: Soliton-based optical communications: an overview. IEEE J. Sel. Top. Quantum Electron. 6(6), 1161–1172 (2000)

DOI

2
Brady, D.J.: Optical imaging and spectroscopy. US Wiley-OSA (2009)

DOI

3
Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press (2007)

DOI

4
Udem, T., Holzwarth, R., Hänsch, T.W.: Optical frequency metrology. Nature 416(6877), 233–237 (2002)

DOI

5
Kivshar, Y., Agrawal, G.: Optical solitons: from fibers to photonic crystals. Academic Press (2003)

DOI

6
Huang, L., Zhang, Y., Liu, X.: Dynamics of carbon nanotube-based mode- locking fiber lasers. Nanophotonics 9(9), 2731–2761 (2020)

DOI

7
Zhang, Y., Cui, Y., Huang, L., Tong, L., Liu, X.: Full-field realtime characterization of creeping solitons dynamics in a modelocked fiber laser. Opt. Lett. 45(22), 6246–6249 (2020)

DOI

8
Cui, Y.D., Liu, X.M., Zeng, C.: Conventional and dissipative solitons in a CFBG-based fiber laser mode-locked with a graphenenanotube mixture. Laser Phys. Lett. 11(5), 055106 (2014)

DOI

9
Dong, X., Yang, Q., Spiess, C., Bucklew, V.G., Renninger, W.H.: Stretched-pulse soliton Kerr resonators. Phys. Rev. Lett. 125(3), 033902 (2020)

DOI

10
Wise, F.W., Chong, A., Renninger, W.H.: High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser Photonics Rev. 2(1–2), 58–73 (2008)

DOI

11
Nie, M., Li, B., Jia, K., Xie, Y., Yan, J., Zhu, S., Xie, Z., Huang, S.W.: Dissipative soliton generation and real-time dynamics in microresonator-filtered fiber lasers. Light Sci. Appl. 11(1), 296 (2022)

DOI

12
Dudley, J.M., Finot, C., Richardson, D.J., Millot, G.: Self-similarity in ultrafast nonlinear optics. Nat. Phys. 3(9), 597–603 (2007)

DOI

13
Ma, C., Khanolkar, A., Chong, A.: High-performance tunable, self-similar fiber laser. Opt. Lett. 44(5), 1234–1236 (2019)

DOI

14
Mao, D., He, Z., Gao, Q., Zeng, C., Yun, L., Du, Y., Lu, H., Sun, Z., Zhao, J.: Birefringence-managed normal-dispersion fiber laser delivering energy-tunable chirp-free solitons. Ultrafast Sci. 2022, 9760631 (2022)

DOI

15
Mao, D., He, Z., Zhang, Y., Du, Y., Zeng, C., Yun, L., Luo, Z., Li, T., Sun, Z., Zhao, J.: Phase-matching-induced near-chirp-free solitons in normal-dispersion fiber lasers. Light Sci. Appl. 11(1), 25 (2022)

DOI

16
Salhi, M., Haboucha, A., Leblond, H., Sanchez, F.: Theoretical study of figure-eight all-fiber laser. Phys. Rev. A 77(3), 033828 (2008)

DOI

17
Komarov, A., Leblond, H., Sanchez, F.: Passive harmonic modelocking in a fiber laser with nonlinear polarization rotation. Opt. Commun. 267(1), 162–169 (2006)

DOI

18
Spühler, G.J., Weingarten, K.J., Grange, R., Krainer, L., Haiml, M., Liverini, V., Golling, M., Schön, S., Keller, U.: Semiconductor saturable absorber mirror structures with low saturation fluence. Appl. Phys. B 81(1), 27–32 (2005)

DOI

19
Set, S.Y., Yaguchi, H., Tanaka, Y., Jablonski, M., Sakakibara, Y., Rozhin, A., Tokumoto, M., Kataura, H., Achiba, Y., Kikuchi, K.: Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes. In: Proceedings of Optical Fiber Communication Conference (Optical Society of America), p. PD44 (2003)

DOI

20
Scardaci, V., Sun, Z., Wang, F., Rozhin, A.G., Hasan, T., Hennrich, F., White, I.H., Milne, W.I., Ferrari, A.C.: Carbon nanotube polycarbonate composites for ultrafast lasers. Adv. Mater. 20(21), 4040–4043 (2008)

DOI

21
Wang, J., Chen, Y., Blau, W.J.: Carbon nanotubes and nanotube composites for nonlinear optical devices. J. Mater. Chem. 19(40), 7425–7443 (2009)

DOI

22
Sun, Z., Hasan, T., Ferrari, A.C.: Ultrafast lasers mode-locked by nanotubes and graphene. Phys. E Low-dimensional Syst. Nanostructures 44, 1082–1091 (2012)

DOI

23
Chernysheva, M., Rozhin, A., Fedotov, Y., Mou, C., Arif, R., Kobtsev, S.M., Dianov, E.M., Turitsyn, S.K.: Carbon nanotubes for ultrafast fibre lasers. Nanophotonics 6(1), 1–30 (2017)

DOI

24
Bao, Q., Zhang, H., Yang, J., Wang, S., Tang, D.Y., Jose, R., Ramakrishna, S., Lim, C.T., Loh, K.P.: Graphene–polymer nanofiber membrane for ultrafast photonics. Adv. Funct. Mater. 20(5), 782–791 (2010)

DOI

25
Mu, H., Lin, S., Wang, Z., Xiao, S., Li, P., Chen, Y., Zhang, H., Bao, H., Lau, S.P., Pan, C., Fan, D., Bao, Q.: Black phosphorus–polymer composites for pulsed lasers. Adv. Opt. Mater. 3(10), 1447–1453 (2015)

DOI

26
Luo, Z.C., Liu, M., Liu, H., Zheng, X.W., Luo, A.P., Zhao, C.J., Zhang, H., Wen, S.C., Xu, W.C.: 2 GHz passively harmonic modelocked fiber laser by a microfiber-based topological insulator saturable absorber. Opt. Lett. 38(24), 5212–5215 (2013)

DOI

27
Wang, F.: Two-dimensional materials for ultrafast lasers. Chin. Phys. B 26(3), 034202 (2017)

DOI

28
Li, S., Wang, C., Yin, Y., Lewis, E., Wang, P.: Novel layered 2D materials for ultrafast photonics. Nanophotonics 9(7), 1743–1786 (2020)

DOI

29
Liu, J., Yang, F., Lu, J., Ye, S., Guo, H., Nie, H., Zhang, J., He, J., Zhang, B., Ni, Z.: High output mode-locked laser empowered by defect regulation in 2D Bi2O2Se saturable absorber. Nat. Commun. 13(1), 3855 (2022)

DOI

30
Zhang, Y., Lu, D., Yu, H., Zhang, H.: Low-dimensional saturable absorbers in the visible spectral region. Adv. Opt. Mater. 7(1), 1800886 (2019)

DOI

31
Keller, U.: Recent developments in compact ultrafast lasers. Nature 424(6950), 831–838 (2003)

DOI

32
Godin, T., Sader, L., Khodadad Kashi, A., Hanzard, P.H., Hideur, A., Moss, D.J., Morandotti, R., Genty, G., Dudley, J.M., Pasquazi, A., Kues, M., Wetzel, B.: Recent advances on time-stretch dispersive Fourier transform and its applications. Adv. Phys. X 7(1), 2067487 (2022)

DOI

33
Wang, Y., Wang, C., Zhang, F., Guo, J., Ma, C., Huang, W., Song, Y., Ge, Y., Liu, J., Zhang, H.: Recent advances in real-time spectrum measurement of soliton dynamics by dispersive Fourier transformation. Rep. Prog. Phys. 83(11), 116401 (2020)

DOI

34
Herink, G., Jalali, B., Ropers, C., Solli, D.R.: Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nat. Photonics 10(5), 321–326 (2016)

DOI

35
Liu, X., Cui, Y.: Revealing the behavior of soliton buildup in a mode-locked laser. Adv. Photonics 1(1), 016003 (2019)

DOI

36
Cui, Y., Liu, X.: Revelation of the birth and extinction dynamics of solitons in SWNT-mode-locked fiber lasers. Photon. Res. 7(4), 423–430 (2019)

DOI

37
Kudelin, I., Sugavanam, S., Chernysheva, M.: Build-up dynamics in bidirectional soliton fibre laser. Photon. Res. 8(6), 776–780 (2020)

DOI

38
Zhang, Y., Dai, K., Zhang, B., Chen, D., Guan, Z., Cui, Y.: Investigations on pulse dynamics and offset spectral filtering in Er-doped Mamyshev fiber oscillator. Opt. Commun. 529, 129103 (2023)

DOI

39
Wang, C., Li, X., Zhang, S.: Automated start-up and extinction dynamics of a mamyshev oscillator based on a temperaturedependent filter. Laser Photonics Rev. 17(7), 2201016 (2023)

DOI

40
Wang, G., Chen, G., Li, W., Zeng, C., Yang, H.: Decaying evolution dynamics of double-pulse mode-locking. Photon. Res. 6(8), 825–829 (2018)

DOI

41
Ma, X., Zhang, K., Li, C., Chen, K., Zhou, Y., Zhang, W., Fang, W., Chen, X., Huang, S., Yu, R., Liao, M., Ohishi, Y., Gao, W.: Decaying dynamics of harmonic mode-locking in a SESAM-based mode-locked fiber laser. Opt. Express 31(22), 36350–36358 (2023)

DOI

42
Peng, J., Boscolo, S., Zhao, Z., Zeng, H.: Breathing dissipative solitons in mode-locked fiber lasers. Sci. Adv. 5(11), eaax1110 (2019)

DOI

43
Wu, X., Peng, J., Boscolo, S., Zhang, Y., Finot, C., Zeng, H.: Intelligent breathing soliton generation in ultrafast fiber lasers. Laser Photonics Rev. 16(2), 1–10 (2022)

DOI

44
Zhou, Y., Ren, Y.X., Shi, J., Wong, K.K.Y.: Breathing dissipative soliton molecule switching in a bidirectional mode-locked fiber laser. Adv. Photon. Res. 3(4), 2100318 (2022)

DOI

45
Peng, J., Zhao, Z., Boscolo, S., Finot, C., Sugavanam, S., Churkin, D.V., Zeng, H.: Breather molecular complexes in a passively mode-locked fiber laser. Laser Photonics Rev. 15(7), 2000132 (2021)

DOI

46
Krupa, K., Nithyanandan, K., Andral, U., Tchofo-Dinda, P., Grelu, P.: Real-time observation of internal motion within ultrafast dissipative optical soliton molecules. Phys. Rev. Lett. 118(24), 243901 (2017)

DOI

47
Wang, Z.Q., Nithyanandan, K., Coillet, A., Tchofo-Dinda, P., Grelu, P.: Optical soliton molecular complexes in a passively mode-locked fibre laser. Nat. Commun. 10(1), 830 (2019)

DOI

48
Agrawal, G.P., Christiansen, P.L., Sørensen, M.P., Scott, A.C.: Nonlinear fiber optics. Springer Berlin Heidelberg (2000)

49
Cui, Y., Zhang, Y., Song, Y., Huang, L., Tong, L., Qiu, J., Liu, X.: XPM-induced vector asymmetrical soliton with spectral period doubling in mode-locked fiber laser. Laser Photonics Rev. 15(3), 2000216 (2021)

DOI

50
Desurvire, E., Zervas, M.N.: Erbium-doped fiber amplifiers: principles and applications. John Wiley & Sons, London (2002)

DOI

51
Pedersen, B., Bjarklev, A., Lumholt, O., Povlsen, J.H.: Detailed design analysis of erbium-doped fiber amplifiers. IEEE Photonics Technol. Lett. 3(6), 548–550 (1991)

DOI

52
Wartak, M.S.: Computational photonics: an introduction with MATLAB. Cambridge University Press (2013)

DOI

53
Han, D.D., Liu, X.M., Cui, Y.D., Wang, G.X., Zeng, C., Yun, L.: Simultaneous picosecond and femtosecond solitons delivered from a nanotube-mode-locked all-fiber laser. Opt. Lett. 39(6), 1565–1568 (2014)

DOI

Outlines

/