Transient breathing dynamics during extinction of dissipative solitons in mode-locked fiber lasers
Received date: 26 Oct 2023
Accepted date: 24 Dec 2023
Copyright
The utilization of the dispersive Fourier transformation approach has enabled comprehensive observation of the birth process of dissipative solitons in fiber lasers. However, there is still a dearth of deep understanding regarding the extinction process of dissipative solitons. In this study, we have utilized a combination of experimental and numerical techniques to thoroughly examine the breathing dynamics of dissipative solitons during the extinction process in an Er-doped mode-locked fiber laser. The results demonstrate that the transient breathing dynamics have a substantial impact on the extinction stage of both steady-state and breathing-state dissipative solitons. The duration of transient breathing exhibits a high degree of sensitivity to variations in pump power. Numerical simulations are utilized to produce analogous breathing dynamics within the framework of a model that integrates equations characterizing the population inversion in a mode-locked laser. These results corroborate the role of Q-switching instability in the onset of breathing oscillations. Furthermore, these findings offer new possibilities for the advancement of various operational frameworks for ultrafast lasers.
Zichuan Yuan , Si Luo , Ke Dai , Xiankun Yao , Chenning Tao , Qiang Ling , Yusheng Zhang , Zuguang Guan , Daru Chen , Yudong Cui . Transient breathing dynamics during extinction of dissipative solitons in mode-locked fiber lasers[J]. Frontiers of Optoelectronics, 2024 , 17(1) : 2 . DOI: 10.1007/s12200-024-00106-6
1 |
Hasegawa, A.: Soliton-based optical communications: an overview. IEEE J. Sel. Top. Quantum Electron. 6(6), 1161–1172 (2000)
|
2 |
Brady, D.J.: Optical imaging and spectroscopy. US Wiley-OSA (2009)
|
3 |
Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press (2007)
|
4 |
Udem, T., Holzwarth, R., Hänsch, T.W.: Optical frequency metrology. Nature 416(6877), 233–237 (2002)
|
5 |
Kivshar, Y., Agrawal, G.: Optical solitons: from fibers to photonic crystals. Academic Press (2003)
|
6 |
Huang, L., Zhang, Y., Liu, X.: Dynamics of carbon nanotube-based mode- locking fiber lasers. Nanophotonics 9(9), 2731–2761 (2020)
|
7 |
Zhang, Y., Cui, Y., Huang, L., Tong, L., Liu, X.: Full-field realtime characterization of creeping solitons dynamics in a modelocked fiber laser. Opt. Lett. 45(22), 6246–6249 (2020)
|
8 |
Cui, Y.D., Liu, X.M., Zeng, C.: Conventional and dissipative solitons in a CFBG-based fiber laser mode-locked with a graphenenanotube mixture. Laser Phys. Lett. 11(5), 055106 (2014)
|
9 |
Dong, X., Yang, Q., Spiess, C., Bucklew, V.G., Renninger, W.H.: Stretched-pulse soliton Kerr resonators. Phys. Rev. Lett. 125(3), 033902 (2020)
|
10 |
Wise, F.W., Chong, A., Renninger, W.H.: High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser Photonics Rev. 2(1–2), 58–73 (2008)
|
11 |
Nie, M., Li, B., Jia, K., Xie, Y., Yan, J., Zhu, S., Xie, Z., Huang, S.W.: Dissipative soliton generation and real-time dynamics in microresonator-filtered fiber lasers. Light Sci. Appl. 11(1), 296 (2022)
|
12 |
Dudley, J.M., Finot, C., Richardson, D.J., Millot, G.: Self-similarity in ultrafast nonlinear optics. Nat. Phys. 3(9), 597–603 (2007)
|
13 |
Ma, C., Khanolkar, A., Chong, A.: High-performance tunable, self-similar fiber laser. Opt. Lett. 44(5), 1234–1236 (2019)
|
14 |
Mao, D., He, Z., Gao, Q., Zeng, C., Yun, L., Du, Y., Lu, H., Sun, Z., Zhao, J.: Birefringence-managed normal-dispersion fiber laser delivering energy-tunable chirp-free solitons. Ultrafast Sci. 2022, 9760631 (2022)
|
15 |
Mao, D., He, Z., Zhang, Y., Du, Y., Zeng, C., Yun, L., Luo, Z., Li, T., Sun, Z., Zhao, J.: Phase-matching-induced near-chirp-free solitons in normal-dispersion fiber lasers. Light Sci. Appl. 11(1), 25 (2022)
|
16 |
Salhi, M., Haboucha, A., Leblond, H., Sanchez, F.: Theoretical study of figure-eight all-fiber laser. Phys. Rev. A 77(3), 033828 (2008)
|
17 |
Komarov, A., Leblond, H., Sanchez, F.: Passive harmonic modelocking in a fiber laser with nonlinear polarization rotation. Opt. Commun. 267(1), 162–169 (2006)
|
18 |
Spühler, G.J., Weingarten, K.J., Grange, R., Krainer, L., Haiml, M., Liverini, V., Golling, M., Schön, S., Keller, U.: Semiconductor saturable absorber mirror structures with low saturation fluence. Appl. Phys. B 81(1), 27–32 (2005)
|
19 |
Set, S.Y., Yaguchi, H., Tanaka, Y., Jablonski, M., Sakakibara, Y., Rozhin, A., Tokumoto, M., Kataura, H., Achiba, Y., Kikuchi, K.: Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes. In: Proceedings of Optical Fiber Communication Conference (Optical Society of America), p. PD44 (2003)
|
20 |
Scardaci, V., Sun, Z., Wang, F., Rozhin, A.G., Hasan, T., Hennrich, F., White, I.H., Milne, W.I., Ferrari, A.C.: Carbon nanotube polycarbonate composites for ultrafast lasers. Adv. Mater. 20(21), 4040–4043 (2008)
|
21 |
Wang, J., Chen, Y., Blau, W.J.: Carbon nanotubes and nanotube composites for nonlinear optical devices. J. Mater. Chem. 19(40), 7425–7443 (2009)
|
22 |
Sun, Z., Hasan, T., Ferrari, A.C.: Ultrafast lasers mode-locked by nanotubes and graphene. Phys. E Low-dimensional Syst. Nanostructures 44, 1082–1091 (2012)
|
23 |
Chernysheva, M., Rozhin, A., Fedotov, Y., Mou, C., Arif, R., Kobtsev, S.M., Dianov, E.M., Turitsyn, S.K.: Carbon nanotubes for ultrafast fibre lasers. Nanophotonics 6(1), 1–30 (2017)
|
24 |
Bao, Q., Zhang, H., Yang, J., Wang, S., Tang, D.Y., Jose, R., Ramakrishna, S., Lim, C.T., Loh, K.P.: Graphene–polymer nanofiber membrane for ultrafast photonics. Adv. Funct. Mater. 20(5), 782–791 (2010)
|
25 |
Mu, H., Lin, S., Wang, Z., Xiao, S., Li, P., Chen, Y., Zhang, H., Bao, H., Lau, S.P., Pan, C., Fan, D., Bao, Q.: Black phosphorus–polymer composites for pulsed lasers. Adv. Opt. Mater. 3(10), 1447–1453 (2015)
|
26 |
Luo, Z.C., Liu, M., Liu, H., Zheng, X.W., Luo, A.P., Zhao, C.J., Zhang, H., Wen, S.C., Xu, W.C.: 2 GHz passively harmonic modelocked fiber laser by a microfiber-based topological insulator saturable absorber. Opt. Lett. 38(24), 5212–5215 (2013)
|
27 |
Wang, F.: Two-dimensional materials for ultrafast lasers. Chin. Phys. B 26(3), 034202 (2017)
|
28 |
Li, S., Wang, C., Yin, Y., Lewis, E., Wang, P.: Novel layered 2D materials for ultrafast photonics. Nanophotonics 9(7), 1743–1786 (2020)
|
29 |
Liu, J., Yang, F., Lu, J., Ye, S., Guo, H., Nie, H., Zhang, J., He, J., Zhang, B., Ni, Z.: High output mode-locked laser empowered by defect regulation in 2D Bi2O2Se saturable absorber. Nat. Commun. 13(1), 3855 (2022)
|
30 |
Zhang, Y., Lu, D., Yu, H., Zhang, H.: Low-dimensional saturable absorbers in the visible spectral region. Adv. Opt. Mater. 7(1), 1800886 (2019)
|
31 |
Keller, U.: Recent developments in compact ultrafast lasers. Nature 424(6950), 831–838 (2003)
|
32 |
Godin, T., Sader, L., Khodadad Kashi, A., Hanzard, P.H., Hideur, A., Moss, D.J., Morandotti, R., Genty, G., Dudley, J.M., Pasquazi, A., Kues, M., Wetzel, B.: Recent advances on time-stretch dispersive Fourier transform and its applications. Adv. Phys. X 7(1), 2067487 (2022)
|
33 |
Wang, Y., Wang, C., Zhang, F., Guo, J., Ma, C., Huang, W., Song, Y., Ge, Y., Liu, J., Zhang, H.: Recent advances in real-time spectrum measurement of soliton dynamics by dispersive Fourier transformation. Rep. Prog. Phys. 83(11), 116401 (2020)
|
34 |
Herink, G., Jalali, B., Ropers, C., Solli, D.R.: Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nat. Photonics 10(5), 321–326 (2016)
|
35 |
Liu, X., Cui, Y.: Revealing the behavior of soliton buildup in a mode-locked laser. Adv. Photonics 1(1), 016003 (2019)
|
36 |
Cui, Y., Liu, X.: Revelation of the birth and extinction dynamics of solitons in SWNT-mode-locked fiber lasers. Photon. Res. 7(4), 423–430 (2019)
|
37 |
Kudelin, I., Sugavanam, S., Chernysheva, M.: Build-up dynamics in bidirectional soliton fibre laser. Photon. Res. 8(6), 776–780 (2020)
|
38 |
Zhang, Y., Dai, K., Zhang, B., Chen, D., Guan, Z., Cui, Y.: Investigations on pulse dynamics and offset spectral filtering in Er-doped Mamyshev fiber oscillator. Opt. Commun. 529, 129103 (2023)
|
39 |
Wang, C., Li, X., Zhang, S.: Automated start-up and extinction dynamics of a mamyshev oscillator based on a temperaturedependent filter. Laser Photonics Rev. 17(7), 2201016 (2023)
|
40 |
Wang, G., Chen, G., Li, W., Zeng, C., Yang, H.: Decaying evolution dynamics of double-pulse mode-locking. Photon. Res. 6(8), 825–829 (2018)
|
41 |
Ma, X., Zhang, K., Li, C., Chen, K., Zhou, Y., Zhang, W., Fang, W., Chen, X., Huang, S., Yu, R., Liao, M., Ohishi, Y., Gao, W.: Decaying dynamics of harmonic mode-locking in a SESAM-based mode-locked fiber laser. Opt. Express 31(22), 36350–36358 (2023)
|
42 |
Peng, J., Boscolo, S., Zhao, Z., Zeng, H.: Breathing dissipative solitons in mode-locked fiber lasers. Sci. Adv. 5(11), eaax1110 (2019)
|
43 |
Wu, X., Peng, J., Boscolo, S., Zhang, Y., Finot, C., Zeng, H.: Intelligent breathing soliton generation in ultrafast fiber lasers. Laser Photonics Rev. 16(2), 1–10 (2022)
|
44 |
Zhou, Y., Ren, Y.X., Shi, J., Wong, K.K.Y.: Breathing dissipative soliton molecule switching in a bidirectional mode-locked fiber laser. Adv. Photon. Res. 3(4), 2100318 (2022)
|
45 |
Peng, J., Zhao, Z., Boscolo, S., Finot, C., Sugavanam, S., Churkin, D.V., Zeng, H.: Breather molecular complexes in a passively mode-locked fiber laser. Laser Photonics Rev. 15(7), 2000132 (2021)
|
46 |
Krupa, K., Nithyanandan, K., Andral, U., Tchofo-Dinda, P., Grelu, P.: Real-time observation of internal motion within ultrafast dissipative optical soliton molecules. Phys. Rev. Lett. 118(24), 243901 (2017)
|
47 |
Wang, Z.Q., Nithyanandan, K., Coillet, A., Tchofo-Dinda, P., Grelu, P.: Optical soliton molecular complexes in a passively mode-locked fibre laser. Nat. Commun. 10(1), 830 (2019)
|
48 |
Agrawal, G.P., Christiansen, P.L., Sørensen, M.P., Scott, A.C.: Nonlinear fiber optics. Springer Berlin Heidelberg (2000)
|
49 |
Cui, Y., Zhang, Y., Song, Y., Huang, L., Tong, L., Qiu, J., Liu, X.: XPM-induced vector asymmetrical soliton with spectral period doubling in mode-locked fiber laser. Laser Photonics Rev. 15(3), 2000216 (2021)
|
50 |
Desurvire, E., Zervas, M.N.: Erbium-doped fiber amplifiers: principles and applications. John Wiley & Sons, London (2002)
|
51 |
Pedersen, B., Bjarklev, A., Lumholt, O., Povlsen, J.H.: Detailed design analysis of erbium-doped fiber amplifiers. IEEE Photonics Technol. Lett. 3(6), 548–550 (1991)
|
52 |
Wartak, M.S.: Computational photonics: an introduction with MATLAB. Cambridge University Press (2013)
|
53 |
Han, D.D., Liu, X.M., Cui, Y.D., Wang, G.X., Zeng, C., Yun, L.: Simultaneous picosecond and femtosecond solitons delivered from a nanotube-mode-locked all-fiber laser. Opt. Lett. 39(6), 1565–1568 (2014)
|
/
〈 | 〉 |