Transient breathing dynamics during extinction of dissipative solitons in mode-locked fiber lasers

Zichuan Yuan, Si Luo, Ke Dai, Xiankun Yao, Chenning Tao, Qiang Ling, Yusheng Zhang, Zuguang Guan, Daru Chen, Yudong Cui

PDF(6093 KB)
Front. Optoelectron. All Journals
PDF(6093 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (1) : 2. DOI: 10.1007/s12200-024-00106-6
RESEARCH ARTICLE

Transient breathing dynamics during extinction of dissipative solitons in mode-locked fiber lasers

Author information +
History +

Abstract

The utilization of the dispersive Fourier transformation approach has enabled comprehensive observation of the birth process of dissipative solitons in fiber lasers. However, there is still a dearth of deep understanding regarding the extinction process of dissipative solitons. In this study, we have utilized a combination of experimental and numerical techniques to thoroughly examine the breathing dynamics of dissipative solitons during the extinction process in an Er-doped mode-locked fiber laser. The results demonstrate that the transient breathing dynamics have a substantial impact on the extinction stage of both steady-state and breathing-state dissipative solitons. The duration of transient breathing exhibits a high degree of sensitivity to variations in pump power. Numerical simulations are utilized to produce analogous breathing dynamics within the framework of a model that integrates equations characterizing the population inversion in a mode-locked laser. These results corroborate the role of Q-switching instability in the onset of breathing oscillations. Furthermore, these findings offer new possibilities for the advancement of various operational frameworks for ultrafast lasers.

Graphical abstract

Keywords

Breathing soliton / Fiber laser / Dispersive Fourier transform / Q-switched instability

Cite this article

Download citation ▾
Zichuan Yuan, Si Luo, Ke Dai, Xiankun Yao, Chenning Tao, Qiang Ling, Yusheng Zhang, Zuguang Guan, Daru Chen, Yudong Cui. Transient breathing dynamics during extinction of dissipative solitons in mode-locked fiber lasers. Front. Optoelectron., 2024, 17(1): 2 https://doi.org/10.1007/s12200-024-00106-6

References

[1]
Hasegawa, A.: Soliton-based optical communications: an overview. IEEE J. Sel. Top. Quantum Electron. 6(6), 1161–1172 (2000)
CrossRef Google scholar
[2]
Brady, D.J.: Optical imaging and spectroscopy. US Wiley-OSA (2009)
CrossRef Google scholar
[3]
Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press (2007)
CrossRef Google scholar
[4]
Udem, T., Holzwarth, R., Hänsch, T.W.: Optical frequency metrology. Nature 416(6877), 233–237 (2002)
CrossRef Google scholar
[5]
Kivshar, Y., Agrawal, G.: Optical solitons: from fibers to photonic crystals. Academic Press (2003)
CrossRef Google scholar
[6]
Huang, L., Zhang, Y., Liu, X.: Dynamics of carbon nanotube-based mode- locking fiber lasers. Nanophotonics 9(9), 2731–2761 (2020)
CrossRef Google scholar
[7]
Zhang, Y., Cui, Y., Huang, L., Tong, L., Liu, X.: Full-field realtime characterization of creeping solitons dynamics in a modelocked fiber laser. Opt. Lett. 45(22), 6246–6249 (2020)
CrossRef Google scholar
[8]
Cui, Y.D., Liu, X.M., Zeng, C.: Conventional and dissipative solitons in a CFBG-based fiber laser mode-locked with a graphenenanotube mixture. Laser Phys. Lett. 11(5), 055106 (2014)
CrossRef Google scholar
[9]
Dong, X., Yang, Q., Spiess, C., Bucklew, V.G., Renninger, W.H.: Stretched-pulse soliton Kerr resonators. Phys. Rev. Lett. 125(3), 033902 (2020)
CrossRef Google scholar
[10]
Wise, F.W., Chong, A., Renninger, W.H.: High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser Photonics Rev. 2(1–2), 58–73 (2008)
CrossRef Google scholar
[11]
Nie, M., Li, B., Jia, K., Xie, Y., Yan, J., Zhu, S., Xie, Z., Huang, S.W.: Dissipative soliton generation and real-time dynamics in microresonator-filtered fiber lasers. Light Sci. Appl. 11(1), 296 (2022)
CrossRef Google scholar
[12]
Dudley, J.M., Finot, C., Richardson, D.J., Millot, G.: Self-similarity in ultrafast nonlinear optics. Nat. Phys. 3(9), 597–603 (2007)
CrossRef Google scholar
[13]
Ma, C., Khanolkar, A., Chong, A.: High-performance tunable, self-similar fiber laser. Opt. Lett. 44(5), 1234–1236 (2019)
CrossRef Google scholar
[14]
Mao, D., He, Z., Gao, Q., Zeng, C., Yun, L., Du, Y., Lu, H., Sun, Z., Zhao, J.: Birefringence-managed normal-dispersion fiber laser delivering energy-tunable chirp-free solitons. Ultrafast Sci. 2022, 9760631 (2022)
CrossRef Google scholar
[15]
Mao, D., He, Z., Zhang, Y., Du, Y., Zeng, C., Yun, L., Luo, Z., Li, T., Sun, Z., Zhao, J.: Phase-matching-induced near-chirp-free solitons in normal-dispersion fiber lasers. Light Sci. Appl. 11(1), 25 (2022)
CrossRef Google scholar
[16]
Salhi, M., Haboucha, A., Leblond, H., Sanchez, F.: Theoretical study of figure-eight all-fiber laser. Phys. Rev. A 77(3), 033828 (2008)
CrossRef Google scholar
[17]
Komarov, A., Leblond, H., Sanchez, F.: Passive harmonic modelocking in a fiber laser with nonlinear polarization rotation. Opt. Commun. 267(1), 162–169 (2006)
CrossRef Google scholar
[18]
Spühler, G.J., Weingarten, K.J., Grange, R., Krainer, L., Haiml, M., Liverini, V., Golling, M., Schön, S., Keller, U.: Semiconductor saturable absorber mirror structures with low saturation fluence. Appl. Phys. B 81(1), 27–32 (2005)
CrossRef Google scholar
[19]
Set, S.Y., Yaguchi, H., Tanaka, Y., Jablonski, M., Sakakibara, Y., Rozhin, A., Tokumoto, M., Kataura, H., Achiba, Y., Kikuchi, K.: Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes. In: Proceedings of Optical Fiber Communication Conference (Optical Society of America), p. PD44 (2003)
CrossRef Google scholar
[20]
Scardaci, V., Sun, Z., Wang, F., Rozhin, A.G., Hasan, T., Hennrich, F., White, I.H., Milne, W.I., Ferrari, A.C.: Carbon nanotube polycarbonate composites for ultrafast lasers. Adv. Mater. 20(21), 4040–4043 (2008)
CrossRef Google scholar
[21]
Wang, J., Chen, Y., Blau, W.J.: Carbon nanotubes and nanotube composites for nonlinear optical devices. J. Mater. Chem. 19(40), 7425–7443 (2009)
CrossRef Google scholar
[22]
Sun, Z., Hasan, T., Ferrari, A.C.: Ultrafast lasers mode-locked by nanotubes and graphene. Phys. E Low-dimensional Syst. Nanostructures 44, 1082–1091 (2012)
CrossRef Google scholar
[23]
Chernysheva, M., Rozhin, A., Fedotov, Y., Mou, C., Arif, R., Kobtsev, S.M., Dianov, E.M., Turitsyn, S.K.: Carbon nanotubes for ultrafast fibre lasers. Nanophotonics 6(1), 1–30 (2017)
CrossRef Google scholar
[24]
Bao, Q., Zhang, H., Yang, J., Wang, S., Tang, D.Y., Jose, R., Ramakrishna, S., Lim, C.T., Loh, K.P.: Graphene–polymer nanofiber membrane for ultrafast photonics. Adv. Funct. Mater. 20(5), 782–791 (2010)
CrossRef Google scholar
[25]
Mu, H., Lin, S., Wang, Z., Xiao, S., Li, P., Chen, Y., Zhang, H., Bao, H., Lau, S.P., Pan, C., Fan, D., Bao, Q.: Black phosphorus–polymer composites for pulsed lasers. Adv. Opt. Mater. 3(10), 1447–1453 (2015)
CrossRef Google scholar
[26]
Luo, Z.C., Liu, M., Liu, H., Zheng, X.W., Luo, A.P., Zhao, C.J., Zhang, H., Wen, S.C., Xu, W.C.: 2 GHz passively harmonic modelocked fiber laser by a microfiber-based topological insulator saturable absorber. Opt. Lett. 38(24), 5212–5215 (2013)
CrossRef Google scholar
[27]
Wang, F.: Two-dimensional materials for ultrafast lasers. Chin. Phys. B 26(3), 034202 (2017)
CrossRef Google scholar
[28]
Li, S., Wang, C., Yin, Y., Lewis, E., Wang, P.: Novel layered 2D materials for ultrafast photonics. Nanophotonics 9(7), 1743–1786 (2020)
CrossRef Google scholar
[29]
Liu, J., Yang, F., Lu, J., Ye, S., Guo, H., Nie, H., Zhang, J., He, J., Zhang, B., Ni, Z.: High output mode-locked laser empowered by defect regulation in 2D Bi2O2Se saturable absorber. Nat. Commun. 13(1), 3855 (2022)
CrossRef Google scholar
[30]
Zhang, Y., Lu, D., Yu, H., Zhang, H.: Low-dimensional saturable absorbers in the visible spectral region. Adv. Opt. Mater. 7(1), 1800886 (2019)
CrossRef Google scholar
[31]
Keller, U.: Recent developments in compact ultrafast lasers. Nature 424(6950), 831–838 (2003)
CrossRef Google scholar
[32]
Godin, T., Sader, L., Khodadad Kashi, A., Hanzard, P.H., Hideur, A., Moss, D.J., Morandotti, R., Genty, G., Dudley, J.M., Pasquazi, A., Kues, M., Wetzel, B.: Recent advances on time-stretch dispersive Fourier transform and its applications. Adv. Phys. X 7(1), 2067487 (2022)
CrossRef Google scholar
[33]
Wang, Y., Wang, C., Zhang, F., Guo, J., Ma, C., Huang, W., Song, Y., Ge, Y., Liu, J., Zhang, H.: Recent advances in real-time spectrum measurement of soliton dynamics by dispersive Fourier transformation. Rep. Prog. Phys. 83(11), 116401 (2020)
CrossRef Google scholar
[34]
Herink, G., Jalali, B., Ropers, C., Solli, D.R.: Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nat. Photonics 10(5), 321–326 (2016)
CrossRef Google scholar
[35]
Liu, X., Cui, Y.: Revealing the behavior of soliton buildup in a mode-locked laser. Adv. Photonics 1(1), 016003 (2019)
CrossRef Google scholar
[36]
Cui, Y., Liu, X.: Revelation of the birth and extinction dynamics of solitons in SWNT-mode-locked fiber lasers. Photon. Res. 7(4), 423–430 (2019)
CrossRef Google scholar
[37]
Kudelin, I., Sugavanam, S., Chernysheva, M.: Build-up dynamics in bidirectional soliton fibre laser. Photon. Res. 8(6), 776–780 (2020)
CrossRef Google scholar
[38]
Zhang, Y., Dai, K., Zhang, B., Chen, D., Guan, Z., Cui, Y.: Investigations on pulse dynamics and offset spectral filtering in Er-doped Mamyshev fiber oscillator. Opt. Commun. 529, 129103 (2023)
CrossRef Google scholar
[39]
Wang, C., Li, X., Zhang, S.: Automated start-up and extinction dynamics of a mamyshev oscillator based on a temperaturedependent filter. Laser Photonics Rev. 17(7), 2201016 (2023)
CrossRef Google scholar
[40]
Wang, G., Chen, G., Li, W., Zeng, C., Yang, H.: Decaying evolution dynamics of double-pulse mode-locking. Photon. Res. 6(8), 825–829 (2018)
CrossRef Google scholar
[41]
Ma, X., Zhang, K., Li, C., Chen, K., Zhou, Y., Zhang, W., Fang, W., Chen, X., Huang, S., Yu, R., Liao, M., Ohishi, Y., Gao, W.: Decaying dynamics of harmonic mode-locking in a SESAM-based mode-locked fiber laser. Opt. Express 31(22), 36350–36358 (2023)
CrossRef Google scholar
[42]
Peng, J., Boscolo, S., Zhao, Z., Zeng, H.: Breathing dissipative solitons in mode-locked fiber lasers. Sci. Adv. 5(11), eaax1110 (2019)
CrossRef Google scholar
[43]
Wu, X., Peng, J., Boscolo, S., Zhang, Y., Finot, C., Zeng, H.: Intelligent breathing soliton generation in ultrafast fiber lasers. Laser Photonics Rev. 16(2), 1–10 (2022)
CrossRef Google scholar
[44]
Zhou, Y., Ren, Y.X., Shi, J., Wong, K.K.Y.: Breathing dissipative soliton molecule switching in a bidirectional mode-locked fiber laser. Adv. Photon. Res. 3(4), 2100318 (2022)
CrossRef Google scholar
[45]
Peng, J., Zhao, Z., Boscolo, S., Finot, C., Sugavanam, S., Churkin, D.V., Zeng, H.: Breather molecular complexes in a passively mode-locked fiber laser. Laser Photonics Rev. 15(7), 2000132 (2021)
CrossRef Google scholar
[46]
Krupa, K., Nithyanandan, K., Andral, U., Tchofo-Dinda, P., Grelu, P.: Real-time observation of internal motion within ultrafast dissipative optical soliton molecules. Phys. Rev. Lett. 118(24), 243901 (2017)
CrossRef Google scholar
[47]
Wang, Z.Q., Nithyanandan, K., Coillet, A., Tchofo-Dinda, P., Grelu, P.: Optical soliton molecular complexes in a passively mode-locked fibre laser. Nat. Commun. 10(1), 830 (2019)
CrossRef Google scholar
[48]
Agrawal, G.P., Christiansen, P.L., Sørensen, M.P., Scott, A.C.: Nonlinear fiber optics. Springer Berlin Heidelberg (2000)
[49]
Cui, Y., Zhang, Y., Song, Y., Huang, L., Tong, L., Qiu, J., Liu, X.: XPM-induced vector asymmetrical soliton with spectral period doubling in mode-locked fiber laser. Laser Photonics Rev. 15(3), 2000216 (2021)
CrossRef Google scholar
[50]
Desurvire, E., Zervas, M.N.: Erbium-doped fiber amplifiers: principles and applications. John Wiley & Sons, London (2002)
CrossRef Google scholar
[51]
Pedersen, B., Bjarklev, A., Lumholt, O., Povlsen, J.H.: Detailed design analysis of erbium-doped fiber amplifiers. IEEE Photonics Technol. Lett. 3(6), 548–550 (1991)
CrossRef Google scholar
[52]
Wartak, M.S.: Computational photonics: an introduction with MATLAB. Cambridge University Press (2013)
CrossRef Google scholar
[53]
Han, D.D., Liu, X.M., Cui, Y.D., Wang, G.X., Zeng, C., Yun, L.: Simultaneous picosecond and femtosecond solitons delivered from a nanotube-mode-locked all-fiber laser. Opt. Lett. 39(6), 1565–1568 (2014)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s) 2024
AI Summary AI Mindmap
PDF(6093 KB)

208

Accesses

2

Citations

28

Altmetric

Detail

Sections
Recommended

/