Transient breathing dynamics during extinction of dissipative solitons in mode-locked fiber lasers
Zichuan Yuan, Si Luo, Ke Dai, Xiankun Yao, Chenning Tao, Qiang Ling, Yusheng Zhang, Zuguang Guan, Daru Chen, Yudong Cui
Transient breathing dynamics during extinction of dissipative solitons in mode-locked fiber lasers
The utilization of the dispersive Fourier transformation approach has enabled comprehensive observation of the birth process of dissipative solitons in fiber lasers. However, there is still a dearth of deep understanding regarding the extinction process of dissipative solitons. In this study, we have utilized a combination of experimental and numerical techniques to thoroughly examine the breathing dynamics of dissipative solitons during the extinction process in an Er-doped mode-locked fiber laser. The results demonstrate that the transient breathing dynamics have a substantial impact on the extinction stage of both steady-state and breathing-state dissipative solitons. The duration of transient breathing exhibits a high degree of sensitivity to variations in pump power. Numerical simulations are utilized to produce analogous breathing dynamics within the framework of a model that integrates equations characterizing the population inversion in a mode-locked laser. These results corroborate the role of Q-switching instability in the onset of breathing oscillations. Furthermore, these findings offer new possibilities for the advancement of various operational frameworks for ultrafast lasers.
Breathing soliton / Fiber laser / Dispersive Fourier transform / Q-switched instability
[1] |
Hasegawa, A.: Soliton-based optical communications: an overview. IEEE J. Sel. Top. Quantum Electron. 6(6), 1161–1172 (2000)
CrossRef
Google scholar
|
[2] |
Brady, D.J.: Optical imaging and spectroscopy. US Wiley-OSA (2009)
CrossRef
Google scholar
|
[3] |
Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press (2007)
CrossRef
Google scholar
|
[4] |
Udem, T., Holzwarth, R., Hänsch, T.W.: Optical frequency metrology. Nature 416(6877), 233–237 (2002)
CrossRef
Google scholar
|
[5] |
Kivshar, Y., Agrawal, G.: Optical solitons: from fibers to photonic crystals. Academic Press (2003)
CrossRef
Google scholar
|
[6] |
Huang, L., Zhang, Y., Liu, X.: Dynamics of carbon nanotube-based mode- locking fiber lasers. Nanophotonics 9(9), 2731–2761 (2020)
CrossRef
Google scholar
|
[7] |
Zhang, Y., Cui, Y., Huang, L., Tong, L., Liu, X.: Full-field realtime characterization of creeping solitons dynamics in a modelocked fiber laser. Opt. Lett. 45(22), 6246–6249 (2020)
CrossRef
Google scholar
|
[8] |
Cui, Y.D., Liu, X.M., Zeng, C.: Conventional and dissipative solitons in a CFBG-based fiber laser mode-locked with a graphenenanotube mixture. Laser Phys. Lett. 11(5), 055106 (2014)
CrossRef
Google scholar
|
[9] |
Dong, X., Yang, Q., Spiess, C., Bucklew, V.G., Renninger, W.H.: Stretched-pulse soliton Kerr resonators. Phys. Rev. Lett. 125(3), 033902 (2020)
CrossRef
Google scholar
|
[10] |
Wise, F.W., Chong, A., Renninger, W.H.: High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser Photonics Rev. 2(1–2), 58–73 (2008)
CrossRef
Google scholar
|
[11] |
Nie, M., Li, B., Jia, K., Xie, Y., Yan, J., Zhu, S., Xie, Z., Huang, S.W.: Dissipative soliton generation and real-time dynamics in microresonator-filtered fiber lasers. Light Sci. Appl. 11(1), 296 (2022)
CrossRef
Google scholar
|
[12] |
Dudley, J.M., Finot, C., Richardson, D.J., Millot, G.: Self-similarity in ultrafast nonlinear optics. Nat. Phys. 3(9), 597–603 (2007)
CrossRef
Google scholar
|
[13] |
Ma, C., Khanolkar, A., Chong, A.: High-performance tunable, self-similar fiber laser. Opt. Lett. 44(5), 1234–1236 (2019)
CrossRef
Google scholar
|
[14] |
Mao, D., He, Z., Gao, Q., Zeng, C., Yun, L., Du, Y., Lu, H., Sun, Z., Zhao, J.: Birefringence-managed normal-dispersion fiber laser delivering energy-tunable chirp-free solitons. Ultrafast Sci. 2022, 9760631 (2022)
CrossRef
Google scholar
|
[15] |
Mao, D., He, Z., Zhang, Y., Du, Y., Zeng, C., Yun, L., Luo, Z., Li, T., Sun, Z., Zhao, J.: Phase-matching-induced near-chirp-free solitons in normal-dispersion fiber lasers. Light Sci. Appl. 11(1), 25 (2022)
CrossRef
Google scholar
|
[16] |
Salhi, M., Haboucha, A., Leblond, H., Sanchez, F.: Theoretical study of figure-eight all-fiber laser. Phys. Rev. A 77(3), 033828 (2008)
CrossRef
Google scholar
|
[17] |
Komarov, A., Leblond, H., Sanchez, F.: Passive harmonic modelocking in a fiber laser with nonlinear polarization rotation. Opt. Commun. 267(1), 162–169 (2006)
CrossRef
Google scholar
|
[18] |
Spühler, G.J., Weingarten, K.J., Grange, R., Krainer, L., Haiml, M., Liverini, V., Golling, M., Schön, S., Keller, U.: Semiconductor saturable absorber mirror structures with low saturation fluence. Appl. Phys. B 81(1), 27–32 (2005)
CrossRef
Google scholar
|
[19] |
Set, S.Y., Yaguchi, H., Tanaka, Y., Jablonski, M., Sakakibara, Y., Rozhin, A., Tokumoto, M., Kataura, H., Achiba, Y., Kikuchi, K.: Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes. In: Proceedings of Optical Fiber Communication Conference (Optical Society of America), p. PD44 (2003)
CrossRef
Google scholar
|
[20] |
Scardaci, V., Sun, Z., Wang, F., Rozhin, A.G., Hasan, T., Hennrich, F., White, I.H., Milne, W.I., Ferrari, A.C.: Carbon nanotube polycarbonate composites for ultrafast lasers. Adv. Mater. 20(21), 4040–4043 (2008)
CrossRef
Google scholar
|
[21] |
Wang, J., Chen, Y., Blau, W.J.: Carbon nanotubes and nanotube composites for nonlinear optical devices. J. Mater. Chem. 19(40), 7425–7443 (2009)
CrossRef
Google scholar
|
[22] |
Sun, Z., Hasan, T., Ferrari, A.C.: Ultrafast lasers mode-locked by nanotubes and graphene. Phys. E Low-dimensional Syst. Nanostructures 44, 1082–1091 (2012)
CrossRef
Google scholar
|
[23] |
Chernysheva, M., Rozhin, A., Fedotov, Y., Mou, C., Arif, R., Kobtsev, S.M., Dianov, E.M., Turitsyn, S.K.: Carbon nanotubes for ultrafast fibre lasers. Nanophotonics 6(1), 1–30 (2017)
CrossRef
Google scholar
|
[24] |
Bao, Q., Zhang, H., Yang, J., Wang, S., Tang, D.Y., Jose, R., Ramakrishna, S., Lim, C.T., Loh, K.P.: Graphene–polymer nanofiber membrane for ultrafast photonics. Adv. Funct. Mater. 20(5), 782–791 (2010)
CrossRef
Google scholar
|
[25] |
Mu, H., Lin, S., Wang, Z., Xiao, S., Li, P., Chen, Y., Zhang, H., Bao, H., Lau, S.P., Pan, C., Fan, D., Bao, Q.: Black phosphorus–polymer composites for pulsed lasers. Adv. Opt. Mater. 3(10), 1447–1453 (2015)
CrossRef
Google scholar
|
[26] |
Luo, Z.C., Liu, M., Liu, H., Zheng, X.W., Luo, A.P., Zhao, C.J., Zhang, H., Wen, S.C., Xu, W.C.: 2 GHz passively harmonic modelocked fiber laser by a microfiber-based topological insulator saturable absorber. Opt. Lett. 38(24), 5212–5215 (2013)
CrossRef
Google scholar
|
[27] |
Wang, F.: Two-dimensional materials for ultrafast lasers. Chin. Phys. B 26(3), 034202 (2017)
CrossRef
Google scholar
|
[28] |
Li, S., Wang, C., Yin, Y., Lewis, E., Wang, P.: Novel layered 2D materials for ultrafast photonics. Nanophotonics 9(7), 1743–1786 (2020)
CrossRef
Google scholar
|
[29] |
Liu, J., Yang, F., Lu, J., Ye, S., Guo, H., Nie, H., Zhang, J., He, J., Zhang, B., Ni, Z.: High output mode-locked laser empowered by defect regulation in 2D Bi2O2Se saturable absorber. Nat. Commun. 13(1), 3855 (2022)
CrossRef
Google scholar
|
[30] |
Zhang, Y., Lu, D., Yu, H., Zhang, H.: Low-dimensional saturable absorbers in the visible spectral region. Adv. Opt. Mater. 7(1), 1800886 (2019)
CrossRef
Google scholar
|
[31] |
Keller, U.: Recent developments in compact ultrafast lasers. Nature 424(6950), 831–838 (2003)
CrossRef
Google scholar
|
[32] |
Godin, T., Sader, L., Khodadad Kashi, A., Hanzard, P.H., Hideur, A., Moss, D.J., Morandotti, R., Genty, G., Dudley, J.M., Pasquazi, A., Kues, M., Wetzel, B.: Recent advances on time-stretch dispersive Fourier transform and its applications. Adv. Phys. X 7(1), 2067487 (2022)
CrossRef
Google scholar
|
[33] |
Wang, Y., Wang, C., Zhang, F., Guo, J., Ma, C., Huang, W., Song, Y., Ge, Y., Liu, J., Zhang, H.: Recent advances in real-time spectrum measurement of soliton dynamics by dispersive Fourier transformation. Rep. Prog. Phys. 83(11), 116401 (2020)
CrossRef
Google scholar
|
[34] |
Herink, G., Jalali, B., Ropers, C., Solli, D.R.: Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nat. Photonics 10(5), 321–326 (2016)
CrossRef
Google scholar
|
[35] |
Liu, X., Cui, Y.: Revealing the behavior of soliton buildup in a mode-locked laser. Adv. Photonics 1(1), 016003 (2019)
CrossRef
Google scholar
|
[36] |
Cui, Y., Liu, X.: Revelation of the birth and extinction dynamics of solitons in SWNT-mode-locked fiber lasers. Photon. Res. 7(4), 423–430 (2019)
CrossRef
Google scholar
|
[37] |
Kudelin, I., Sugavanam, S., Chernysheva, M.: Build-up dynamics in bidirectional soliton fibre laser. Photon. Res. 8(6), 776–780 (2020)
CrossRef
Google scholar
|
[38] |
Zhang, Y., Dai, K., Zhang, B., Chen, D., Guan, Z., Cui, Y.: Investigations on pulse dynamics and offset spectral filtering in Er-doped Mamyshev fiber oscillator. Opt. Commun. 529, 129103 (2023)
CrossRef
Google scholar
|
[39] |
Wang, C., Li, X., Zhang, S.: Automated start-up and extinction dynamics of a mamyshev oscillator based on a temperaturedependent filter. Laser Photonics Rev. 17(7), 2201016 (2023)
CrossRef
Google scholar
|
[40] |
Wang, G., Chen, G., Li, W., Zeng, C., Yang, H.: Decaying evolution dynamics of double-pulse mode-locking. Photon. Res. 6(8), 825–829 (2018)
CrossRef
Google scholar
|
[41] |
Ma, X., Zhang, K., Li, C., Chen, K., Zhou, Y., Zhang, W., Fang, W., Chen, X., Huang, S., Yu, R., Liao, M., Ohishi, Y., Gao, W.: Decaying dynamics of harmonic mode-locking in a SESAM-based mode-locked fiber laser. Opt. Express 31(22), 36350–36358 (2023)
CrossRef
Google scholar
|
[42] |
Peng, J., Boscolo, S., Zhao, Z., Zeng, H.: Breathing dissipative solitons in mode-locked fiber lasers. Sci. Adv. 5(11), eaax1110 (2019)
CrossRef
Google scholar
|
[43] |
Wu, X., Peng, J., Boscolo, S., Zhang, Y., Finot, C., Zeng, H.: Intelligent breathing soliton generation in ultrafast fiber lasers. Laser Photonics Rev. 16(2), 1–10 (2022)
CrossRef
Google scholar
|
[44] |
Zhou, Y., Ren, Y.X., Shi, J., Wong, K.K.Y.: Breathing dissipative soliton molecule switching in a bidirectional mode-locked fiber laser. Adv. Photon. Res. 3(4), 2100318 (2022)
CrossRef
Google scholar
|
[45] |
Peng, J., Zhao, Z., Boscolo, S., Finot, C., Sugavanam, S., Churkin, D.V., Zeng, H.: Breather molecular complexes in a passively mode-locked fiber laser. Laser Photonics Rev. 15(7), 2000132 (2021)
CrossRef
Google scholar
|
[46] |
Krupa, K., Nithyanandan, K., Andral, U., Tchofo-Dinda, P., Grelu, P.: Real-time observation of internal motion within ultrafast dissipative optical soliton molecules. Phys. Rev. Lett. 118(24), 243901 (2017)
CrossRef
Google scholar
|
[47] |
Wang, Z.Q., Nithyanandan, K., Coillet, A., Tchofo-Dinda, P., Grelu, P.: Optical soliton molecular complexes in a passively mode-locked fibre laser. Nat. Commun. 10(1), 830 (2019)
CrossRef
Google scholar
|
[48] |
Agrawal, G.P., Christiansen, P.L., Sørensen, M.P., Scott, A.C.: Nonlinear fiber optics. Springer Berlin Heidelberg (2000)
|
[49] |
Cui, Y., Zhang, Y., Song, Y., Huang, L., Tong, L., Qiu, J., Liu, X.: XPM-induced vector asymmetrical soliton with spectral period doubling in mode-locked fiber laser. Laser Photonics Rev. 15(3), 2000216 (2021)
CrossRef
Google scholar
|
[50] |
Desurvire, E., Zervas, M.N.: Erbium-doped fiber amplifiers: principles and applications. John Wiley & Sons, London (2002)
CrossRef
Google scholar
|
[51] |
Pedersen, B., Bjarklev, A., Lumholt, O., Povlsen, J.H.: Detailed design analysis of erbium-doped fiber amplifiers. IEEE Photonics Technol. Lett. 3(6), 548–550 (1991)
CrossRef
Google scholar
|
[52] |
Wartak, M.S.: Computational photonics: an introduction with MATLAB. Cambridge University Press (2013)
CrossRef
Google scholar
|
[53] |
Han, D.D., Liu, X.M., Cui, Y.D., Wang, G.X., Zeng, C., Yun, L.: Simultaneous picosecond and femtosecond solitons delivered from a nanotube-mode-locked all-fiber laser. Opt. Lett. 39(6), 1565–1568 (2014)
CrossRef
Google scholar
|
/
〈 | 〉 |