Efficient and accurate numerical-projection of electromagnetic multipoles for scattering objects

  • Wenfei Guo 1 ,
  • Zizhe Cai 1 ,
  • Zhongfei Xiong , 1 ,
  • Weijin Chen 2 ,
  • Yuntian Chen , 1,3,4
Expand
  • 1. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2. Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
  • 3. Wuhan National Laboratory of Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 4. Optics Valley Laboratory, Wuhan 430074, China
xiongzf94@outlook.com
yuntian@hust.edu.cn

Received date: 28 Aug 2023

Accepted date: 20 Nov 2023

Copyright

2023 The Author(s) 2023

Abstract

In this paper, we develop an efficient and accurate procedure of electromagnetic multipole decomposition by using the Lebedev and Gaussian quadrature methods to perform the numerical integration. Firstly, we briefly review the principles of multipole decomposition, highlighting two numerical projection methods including surface and volume integration. Secondly, we discuss the Lebedev and Gaussian quadrature methods, provide a detailed recipe to select the quadrature points and the corresponding weighting factor, and illustrate the integration accuracy and numerical efficiency (that is, with very few sampling points) using a unit sphere surface and regular tetrahedron. In the demonstrations of an isotropic dielectric nanosphere, a symmetric scatterer, and an anisotropic nanosphere, we perform multipole decomposition and validate our numerical projection procedure. The obtained results from our procedure are all consistent with those from Mie theory, symmetry constraints, and finite element simulations.

Cite this article

Wenfei Guo , Zizhe Cai , Zhongfei Xiong , Weijin Chen , Yuntian Chen . Efficient and accurate numerical-projection of electromagnetic multipoles for scattering objects[J]. Frontiers of Optoelectronics, 2023 , 16(4) : 48 . DOI: 10.1007/s12200-023-00102-2

1
Bohren, C.F., Huffman, D.R.: Absorption and scattering of light by small particles. John Wiley & Sons, Hoboken (1998)

DOI

2
Jackson, J.: Classical electrodynamics. John Wiley & Sons, Hoboken (1998)

3
Evlyukhin, A.B., Fischer, T., Reinhardt, C., Chichkov, B.N.: Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles. Phys. Rev. B 94(20), 205434 (2016)

DOI

4
Terekhov, P.D., Babicheva, V.E., Baryshnikova, K.V., Shalin, A.S., Karabchevsky, A., Evlyukhin, A.B.: Multipole analysis of dielectric metasurfaces composed of nonspherical nanoparticles and lattice invisibility effect. Phys. Rev. B 99(4), 045424 (2019)

DOI

5
Chen, W., Yang, Q., Chen, Y., Liu, W.: Scattering activities bounded by reciprocity and parity conservation. Phys. Rev. Res. 2(1), 013277 (2020)

DOI

6
Kuznetsov, A.V., Valero, A.C., Shamkhi, H.K., Terekhov, P., Ni, X., Bobrovs, V., Rybin, M.V., Shalin, A.S.: Special scattering regimes for conical all-dielectric nanoparticles. Sci. Rep. 12(1), 21904 (2022)

DOI

7
Chen, W., Yang, Q., Chen, Y., Liu, W.: Extremize optical chiralities through polarization singularities. Phys. Rev. Lett. 126(25), 253901 (2021)

DOI

8
Alaee, R., Rockstuhl, C., Fernandez-Corbaton, I.: Exact multipolar decompositions with applications in nanophotonics. Adv. Opt. Mater. 7(1), 1800783 (2019)

DOI

9
Evlyukhin, A.B., Chichkov, B.N.: Multipole decompositions for directional light scattering. Phys. Rev. B 100(12), 125415 (2019)

DOI

10
Fu, Y.H., Kuznetsov, A.I., Miroshnichenko, A.E., Yu, Y.F., Luk’yanchuk, B.: Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4(1), 1527 (2013)

DOI

11
Chen, W., Chen, Y., Liu, W.: Multipolar conversion induced sub-wavelength high-Q Kerker supermodes with unidirectional radiations. Laser Photonics Rev. 13(9), 1900067 (2019)

DOI

12
van de Haar, M.A., van de Groep, J., Brenny, B., Polman, A.: Controlling magnetic and electric dipole modes in hollow dielectric nanocylinders. Opt. Express 24(3), 2047–2064 (2016)

DOI

13
Geffrin, J.M., García-Cámara, B., Gómez-Medina, R., Albella, P., Froufe-Pérez, L.S., Eyraud, C., Litman, A., Vaillon, R., González, F., Nieto-Vesperinas, M., Sáenz, J.J., Moreno, F.: Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat. Commun. 3(1), 1171 (2012)

DOI

14
Chen, W., Chen, Y., Liu, W.: Singularities and Poincaré Indices of Electromagnetic Multipoles. Phys. Rev. Lett. 122(15), 153907 (2019)

DOI

15
Kuznetsov, A.I., Miroshnichenko, A.E., Brongersma, M.L., Kivshar, Y.S., Luk’yanchuk, B.: Optically resonant dielectric nanostructures. Science 354, 2742 (2016)

DOI

16
Gurvitz, E.A., Ladutenko, K.S., Dergachev, P.A., Evlyukhin, A.B., Miroshnichenko, A.E., Shalin, A.S.: The high-order toroidal moments and anapole states in all-dielectric photonics. Laser Photonics Rev. 13(5), 1800266 (2019)

DOI

17
Terekhov, P.D., Evlyukhin, A.B., Redka, D., Volkov, V.S., Shalin, A.S., Karabchevsky, A.: Magnetic octupole response of dielectric quadrumers. Laser Photonics Rev. 14(4), 1900331 (2020)

DOI

18
Prokhorov, A.V., Terekhov, P.D., Gubin, M.Y., Shesterikov, A.V., Ni, X., Tuz, V.R., Evlyukhin, A.B.: Resonant light trapping via lattice-induced multipole coupling in symmetrical metasurfaces. ACS Photonics 9(12), 3869–3875 (2022)

DOI

19
Liu, W., Zhang, J., Lei, B., Ma, H., Xie, W., Hu, H.: Ultra-directional forward scattering by individual core-shell nanoparticles. Opt. Express 22(13), 16178–16187 (2014)

DOI

20
Liu, W.: Generalized Magnetic Mirrors. Phys. Rev. Lett. 119(12), 123902 (2017)

DOI

21
Yang, Y., Miroshnichenko, A.E., Kostinski, S.V., Odit, M., Kapitanova, P., Qiu, M., Kivshar, Y.S.: Multimode directionality in all-dielectric metasurfaces. Phys. Rev. B 95(16), 165426 (2017)

DOI

22
Liu, W., Miroshnichenko, A.E.: Beam steering with dielectric metalattices. ACS Photonics 5, 1733–1741 (2018)

DOI

23
Miroshnichenko, A.E., Evlyukhin, A.B., Yu, Y.F., Bakker, R.M., Chipouline, A., Kuznetsov, A.I., Luk’yanchuk, B., Chichkov, B.N., Kivshar, Y.S.: Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 6, 8069 (2015)

DOI

24
Saadabad, R.M., Huang, L., Evlyukhin, A.B., Miroshnichenko, A.E.: Multifaceted anapole: from physics to applications [Invited]. Opt. Mater. Express 12, 1817–1837 (2022)

DOI

25
Khorasaninejad, M., Chen, W.T., Devlin, R.C., Oh, J., Zhu, A.Y., Capasso, F.: Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352(6290), 1190–1194 (2016)

DOI

26
Wang, S., Wu, P.C., Su, V.C., Lai, Y.C., Chen, M.K., Kuo, H.Y., Chen, B.H., Chen, Y.H., Huang, T.T., Wang, J.H., Lin, R.M., Kuan, C.H., Li, T., Wang, Z., Zhu, S., Tsai, D.P.: A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13(3), 227–232 (2018)

DOI

27
Yu, N., Capasso, F.: Flat optics with designer metasurfaces. Nat. Mater. 13(2), 139–150 (2014)

DOI

28
Neshev, D., Aharonovich, I.: Optical metasurfaces: new generation building blocks for multi-functional optics. Light Sci. Appl. 7(1), 58 (2018)

DOI

29
Yang, Y., Wang, W., Moitra, P., Kravchenko, I.I., Briggs, D.P., Valentine, J.: Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14(3), 1394–1399 (2014)

DOI

30
Decker, M., Staude, I., Falkner, M., Dominguez, J., Neshev, D.N., Brener, I., Pertsch, T., Kivshar, Y.S.: High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3(6), 813–820 (2015)

DOI

31
Jahani, S., Jacob, Z.: All-dielectric metamaterials. Nat. Nanotechnol. 11(1), 23–36 (2016)

DOI

32
Alaee, R., Rockstuhl, C., Fernandez-Corbaton, I.: An electromagnetic multipole expansion beyond the long-wavelength approximation. Opt. Commun. 407, 17–21 (2018)

DOI

33
Evlyukhin, A.B., Reinhardt, C., Chichkov, B.N.: Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation. Phys. Rev. B 84(23), 235429 (2011)

DOI

34
Evlyukhin, A.B., Tuz, V.R.: Electromagnetic scattering by arbitrary-shaped magnetic particles and multipole decomposition: Analytical and numerical approaches. Phys. Rev. B 107(15), 155425 (2023)

DOI

35
Nanz, S.: Toroidal multipole moments in classical electrodynamics: an analysis of their emergence and physical significance. Springer, Wiesbaden (2016)

DOI

36
Guo, W., Cai, Z., Xiong, Z., Chen, W., Chen, Y.: HUST-CPO/Multipole-Decomposition-for-Scattering. Availale at the website of github.com/HUST-CPO/Multipole-Decomposition-for-Scatt ering, GitHub (2023)

37
Mühlig, S., Menzel, C., Rockstuhl, C., Lederer, F.: Multipole analysis of meta-atoms. Metamaterials 5(2), 64–73 (2011)

DOI

38
Grahn, P., Shevchenko, A., Kaivola, M.: Electromagnetic multipole theory for optical nanomaterials. New J. Phys. 14(9), 093033 (2012)

DOI

39
Yu, J.: Symmetric gaussian quadrature formulae for tetrahedronal regions. Comput. Methods Appl. Mech. Eng. 43(3), 349–353 (1984)

DOI

40
Dunavant, D.A.: High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int. J. Numer. Meth. Eng. 21(6), 1129–1148 (1985)

DOI

41
Keast, P.: Moderate-degree tetrahedral quadrature formulas. Comput. Methods Appl. Mech. Eng. 55(3), 339–348 (1986)

DOI

42
Lebedev, V.I.: Values of the nodes and weights of ninth to seventeenth order Gauss-Markov quadrature formulae invariant under the octahedron group with inversion. USSR Comput. Math. Math. Phys. 15(1), 44–51 (1975)

DOI

43
Lebedev, V.I.: Quadratures on a sphere. USSR Comput. Math. Math. Phys. 16(2), 10–24 (1976)

DOI

44
COMSOL Multiphysics 6.0: a finite element analysis, solver and simulation software. Available at the website of comsol.com (2023)

45
García-Etxarri, A., Gómez-Medina, R., Froufe-Pérez, L.S., López, C., Chantada, L., Scheffold, F., Aizpurua, J., Nieto-Vesperinas, M., Sáenz, J.J.: Strong magnetic response of submicron dielectric particles in the infrared. Opt. Express 19(6), 4815–4826 (2011)

DOI

46
Sakoda, K.: Optical properties of photonic crystals. Springer, Berlin (2005)

DOI

47
Xiong, Z., Yang, Q., Chen, W., Wang, Z., Xu, J., Liu, W., Chen, Y.: On the constraints of electromagnetic multipoles for symmetric scatterers: eigenmode analysis. Opt. Express 28(3), 3073–3085 (2020)

DOI

48
Poleva, M., Frizyuk, K., Baryshnikova, K., Evlyukhin, A., Petrov, M., Bogdanov, A.: Multipolar theory of bianisotropic response of meta-atoms. Phys. Rev. B 107(4), L041304 (2023)

DOI

Outlines

/