Efficient and accurate numerical-projection of electromagnetic multipoles for scattering objects

Wenfei Guo, Zizhe Cai, Zhongfei Xiong, Weijin Chen, Yuntian Chen

PDF(2134 KB)
PDF(2134 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (4) : 48. DOI: 10.1007/s12200-023-00102-2
RESEARCH ARTICLE

Efficient and accurate numerical-projection of electromagnetic multipoles for scattering objects

Author information +
History +

Abstract

In this paper, we develop an efficient and accurate procedure of electromagnetic multipole decomposition by using the Lebedev and Gaussian quadrature methods to perform the numerical integration. Firstly, we briefly review the principles of multipole decomposition, highlighting two numerical projection methods including surface and volume integration. Secondly, we discuss the Lebedev and Gaussian quadrature methods, provide a detailed recipe to select the quadrature points and the corresponding weighting factor, and illustrate the integration accuracy and numerical efficiency (that is, with very few sampling points) using a unit sphere surface and regular tetrahedron. In the demonstrations of an isotropic dielectric nanosphere, a symmetric scatterer, and an anisotropic nanosphere, we perform multipole decomposition and validate our numerical projection procedure. The obtained results from our procedure are all consistent with those from Mie theory, symmetry constraints, and finite element simulations.

Graphical abstract

Keywords

Multipole decomposition / Numerical quadrature / Light scattering

Cite this article

Download citation ▾
Wenfei Guo, Zizhe Cai, Zhongfei Xiong, Weijin Chen, Yuntian Chen. Efficient and accurate numerical-projection of electromagnetic multipoles for scattering objects. Front. Optoelectron., 2023, 16(4): 48 https://doi.org/10.1007/s12200-023-00102-2

References

[1]
Bohren, C.F., Huffman, D.R.: Absorption and scattering of light by small particles. John Wiley & Sons, Hoboken (1998)
CrossRef Google scholar
[2]
Jackson, J.: Classical electrodynamics. John Wiley & Sons, Hoboken (1998)
[3]
Evlyukhin, A.B., Fischer, T., Reinhardt, C., Chichkov, B.N.: Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles. Phys. Rev. B 94(20), 205434 (2016)
CrossRef Google scholar
[4]
Terekhov, P.D., Babicheva, V.E., Baryshnikova, K.V., Shalin, A.S., Karabchevsky, A., Evlyukhin, A.B.: Multipole analysis of dielectric metasurfaces composed of nonspherical nanoparticles and lattice invisibility effect. Phys. Rev. B 99(4), 045424 (2019)
CrossRef Google scholar
[5]
Chen, W., Yang, Q., Chen, Y., Liu, W.: Scattering activities bounded by reciprocity and parity conservation. Phys. Rev. Res. 2(1), 013277 (2020)
CrossRef Google scholar
[6]
Kuznetsov, A.V., Valero, A.C., Shamkhi, H.K., Terekhov, P., Ni, X., Bobrovs, V., Rybin, M.V., Shalin, A.S.: Special scattering regimes for conical all-dielectric nanoparticles. Sci. Rep. 12(1), 21904 (2022)
CrossRef Google scholar
[7]
Chen, W., Yang, Q., Chen, Y., Liu, W.: Extremize optical chiralities through polarization singularities. Phys. Rev. Lett. 126(25), 253901 (2021)
CrossRef Google scholar
[8]
Alaee, R., Rockstuhl, C., Fernandez-Corbaton, I.: Exact multipolar decompositions with applications in nanophotonics. Adv. Opt. Mater. 7(1), 1800783 (2019)
CrossRef Google scholar
[9]
Evlyukhin, A.B., Chichkov, B.N.: Multipole decompositions for directional light scattering. Phys. Rev. B 100(12), 125415 (2019)
CrossRef Google scholar
[10]
Fu, Y.H., Kuznetsov, A.I., Miroshnichenko, A.E., Yu, Y.F., Luk’yanchuk, B.: Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4(1), 1527 (2013)
CrossRef Google scholar
[11]
Chen, W., Chen, Y., Liu, W.: Multipolar conversion induced sub-wavelength high-Q Kerker supermodes with unidirectional radiations. Laser Photonics Rev. 13(9), 1900067 (2019)
CrossRef Google scholar
[12]
van de Haar, M.A., van de Groep, J., Brenny, B., Polman, A.: Controlling magnetic and electric dipole modes in hollow dielectric nanocylinders. Opt. Express 24(3), 2047–2064 (2016)
CrossRef Google scholar
[13]
Geffrin, J.M., García-Cámara, B., Gómez-Medina, R., Albella, P., Froufe-Pérez, L.S., Eyraud, C., Litman, A., Vaillon, R., González, F., Nieto-Vesperinas, M., Sáenz, J.J., Moreno, F.: Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat. Commun. 3(1), 1171 (2012)
CrossRef Google scholar
[14]
Chen, W., Chen, Y., Liu, W.: Singularities and Poincaré Indices of Electromagnetic Multipoles. Phys. Rev. Lett. 122(15), 153907 (2019)
CrossRef Google scholar
[15]
Kuznetsov, A.I., Miroshnichenko, A.E., Brongersma, M.L., Kivshar, Y.S., Luk’yanchuk, B.: Optically resonant dielectric nanostructures. Science 354, 2742 (2016)
CrossRef Google scholar
[16]
Gurvitz, E.A., Ladutenko, K.S., Dergachev, P.A., Evlyukhin, A.B., Miroshnichenko, A.E., Shalin, A.S.: The high-order toroidal moments and anapole states in all-dielectric photonics. Laser Photonics Rev. 13(5), 1800266 (2019)
CrossRef Google scholar
[17]
Terekhov, P.D., Evlyukhin, A.B., Redka, D., Volkov, V.S., Shalin, A.S., Karabchevsky, A.: Magnetic octupole response of dielectric quadrumers. Laser Photonics Rev. 14(4), 1900331 (2020)
CrossRef Google scholar
[18]
Prokhorov, A.V., Terekhov, P.D., Gubin, M.Y., Shesterikov, A.V., Ni, X., Tuz, V.R., Evlyukhin, A.B.: Resonant light trapping via lattice-induced multipole coupling in symmetrical metasurfaces. ACS Photonics 9(12), 3869–3875 (2022)
CrossRef Google scholar
[19]
Liu, W., Zhang, J., Lei, B., Ma, H., Xie, W., Hu, H.: Ultra-directional forward scattering by individual core-shell nanoparticles. Opt. Express 22(13), 16178–16187 (2014)
CrossRef Google scholar
[20]
Liu, W.: Generalized Magnetic Mirrors. Phys. Rev. Lett. 119(12), 123902 (2017)
CrossRef Google scholar
[21]
Yang, Y., Miroshnichenko, A.E., Kostinski, S.V., Odit, M., Kapitanova, P., Qiu, M., Kivshar, Y.S.: Multimode directionality in all-dielectric metasurfaces. Phys. Rev. B 95(16), 165426 (2017)
CrossRef Google scholar
[22]
Liu, W., Miroshnichenko, A.E.: Beam steering with dielectric metalattices. ACS Photonics 5, 1733–1741 (2018)
CrossRef Google scholar
[23]
Miroshnichenko, A.E., Evlyukhin, A.B., Yu, Y.F., Bakker, R.M., Chipouline, A., Kuznetsov, A.I., Luk’yanchuk, B., Chichkov, B.N., Kivshar, Y.S.: Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 6, 8069 (2015)
CrossRef Google scholar
[24]
Saadabad, R.M., Huang, L., Evlyukhin, A.B., Miroshnichenko, A.E.: Multifaceted anapole: from physics to applications [Invited]. Opt. Mater. Express 12, 1817–1837 (2022)
CrossRef Google scholar
[25]
Khorasaninejad, M., Chen, W.T., Devlin, R.C., Oh, J., Zhu, A.Y., Capasso, F.: Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352(6290), 1190–1194 (2016)
CrossRef Google scholar
[26]
Wang, S., Wu, P.C., Su, V.C., Lai, Y.C., Chen, M.K., Kuo, H.Y., Chen, B.H., Chen, Y.H., Huang, T.T., Wang, J.H., Lin, R.M., Kuan, C.H., Li, T., Wang, Z., Zhu, S., Tsai, D.P.: A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13(3), 227–232 (2018)
CrossRef Google scholar
[27]
Yu, N., Capasso, F.: Flat optics with designer metasurfaces. Nat. Mater. 13(2), 139–150 (2014)
CrossRef Google scholar
[28]
Neshev, D., Aharonovich, I.: Optical metasurfaces: new generation building blocks for multi-functional optics. Light Sci. Appl. 7(1), 58 (2018)
CrossRef Google scholar
[29]
Yang, Y., Wang, W., Moitra, P., Kravchenko, I.I., Briggs, D.P., Valentine, J.: Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14(3), 1394–1399 (2014)
CrossRef Google scholar
[30]
Decker, M., Staude, I., Falkner, M., Dominguez, J., Neshev, D.N., Brener, I., Pertsch, T., Kivshar, Y.S.: High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3(6), 813–820 (2015)
CrossRef Google scholar
[31]
Jahani, S., Jacob, Z.: All-dielectric metamaterials. Nat. Nanotechnol. 11(1), 23–36 (2016)
CrossRef Google scholar
[32]
Alaee, R., Rockstuhl, C., Fernandez-Corbaton, I.: An electromagnetic multipole expansion beyond the long-wavelength approximation. Opt. Commun. 407, 17–21 (2018)
CrossRef Google scholar
[33]
Evlyukhin, A.B., Reinhardt, C., Chichkov, B.N.: Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation. Phys. Rev. B 84(23), 235429 (2011)
CrossRef Google scholar
[34]
Evlyukhin, A.B., Tuz, V.R.: Electromagnetic scattering by arbitrary-shaped magnetic particles and multipole decomposition: Analytical and numerical approaches. Phys. Rev. B 107(15), 155425 (2023)
CrossRef Google scholar
[35]
Nanz, S.: Toroidal multipole moments in classical electrodynamics: an analysis of their emergence and physical significance. Springer, Wiesbaden (2016)
CrossRef Google scholar
[36]
Guo, W., Cai, Z., Xiong, Z., Chen, W., Chen, Y.: HUST-CPO/Multipole-Decomposition-for-Scattering. Availale at the website of github.com/HUST-CPO/Multipole-Decomposition-for-Scatt ering, GitHub (2023)
[37]
Mühlig, S., Menzel, C., Rockstuhl, C., Lederer, F.: Multipole analysis of meta-atoms. Metamaterials 5(2), 64–73 (2011)
CrossRef Google scholar
[38]
Grahn, P., Shevchenko, A., Kaivola, M.: Electromagnetic multipole theory for optical nanomaterials. New J. Phys. 14(9), 093033 (2012)
CrossRef Google scholar
[39]
Yu, J.: Symmetric gaussian quadrature formulae for tetrahedronal regions. Comput. Methods Appl. Mech. Eng. 43(3), 349–353 (1984)
CrossRef Google scholar
[40]
Dunavant, D.A.: High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int. J. Numer. Meth. Eng. 21(6), 1129–1148 (1985)
CrossRef Google scholar
[41]
Keast, P.: Moderate-degree tetrahedral quadrature formulas. Comput. Methods Appl. Mech. Eng. 55(3), 339–348 (1986)
CrossRef Google scholar
[42]
Lebedev, V.I.: Values of the nodes and weights of ninth to seventeenth order Gauss-Markov quadrature formulae invariant under the octahedron group with inversion. USSR Comput. Math. Math. Phys. 15(1), 44–51 (1975)
CrossRef Google scholar
[43]
Lebedev, V.I.: Quadratures on a sphere. USSR Comput. Math. Math. Phys. 16(2), 10–24 (1976)
CrossRef Google scholar
[44]
COMSOL Multiphysics 6.0: a finite element analysis, solver and simulation software. Available at the website of comsol.com (2023)
[45]
García-Etxarri, A., Gómez-Medina, R., Froufe-Pérez, L.S., López, C., Chantada, L., Scheffold, F., Aizpurua, J., Nieto-Vesperinas, M., Sáenz, J.J.: Strong magnetic response of submicron dielectric particles in the infrared. Opt. Express 19(6), 4815–4826 (2011)
CrossRef Google scholar
[46]
Sakoda, K.: Optical properties of photonic crystals. Springer, Berlin (2005)
CrossRef Google scholar
[47]
Xiong, Z., Yang, Q., Chen, W., Wang, Z., Xu, J., Liu, W., Chen, Y.: On the constraints of electromagnetic multipoles for symmetric scatterers: eigenmode analysis. Opt. Express 28(3), 3073–3085 (2020)
CrossRef Google scholar
[48]
Poleva, M., Frizyuk, K., Baryshnikova, K., Evlyukhin, A., Petrov, M., Bogdanov, A.: Multipolar theory of bianisotropic response of meta-atoms. Phys. Rev. B 107(4), L041304 (2023)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(2134 KB)

Accesses

Citations

Detail

Sections
Recommended

/