RESEARCH ARTICLE

Vapor growth of V-doped MoS2 monolayers with enhanced B-exciton emission and broad spectral response

  • Biyuan Zheng 1 ,
  • Xingxia Sun 1 ,
  • Weihao Zheng 2 ,
  • Chenguang Zhu 1 ,
  • Chao Ma 1 ,
  • Anlian Pan 1 ,
  • Dong Li , 1 ,
  • Shengman Li , 1,3
Expand
  • 1. Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
  • 2. College of Advanced Interdisciplinary Studies and Hunan Provincial Key Laboratory of Novel Nano Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China
  • 3. Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
liidong@hnu.edu.cn
smli@hnu.edu.cn

Received date: 15 Sep 2023

Accepted date: 03 Nov 2023

Copyright

2023 The Author(s) 2023

Abstract

Dynamically engineering the optical and electrical properties in two-dimensional (2D) materials is of great significance for designing the related functions and applications. The introduction of foreign-atoms has previously been proven to be a feasible way to tune the band structure and related properties of 3D materials; however, this approach still remains to be explored in 2D materials. Here, we systematically demonstrate the growth of vanadium-doped molybdenum disulfide (V-doped MoS2) monolayers via an alkali metal-assisted chemical vapor deposition method. Scanning transmission electron microscopy demonstrated that V atoms substituted the Mo atoms and became uniformly distributed in the MoS2 monolayers. This was also confirmed by Raman and X-ray photoelectron spectroscopy. Power-dependent photoluminescence spectra clearly revealed the enhanced B-exciton emission characteristics in the V-doped MoS2 monolayers (with low doping concentration). Most importantly, through temperature-dependent study, we observed efficient valley scattering of the B-exciton, greatly enhancing its emission intensity. Carrier transport experiments indicated that typical p-type conduction gradually arisen and was enhanced with increasing V composition in the V-doped MoS2, where a clear n-type behavior transited first to ambipolar and then to lightly p-type charge carrier transport. In addition, visible to infrared wide-band photodetectors based on V-doped MoS2 monolayers (with low doping concentration) were demonstrated. The V-doped MoS2 monolayers with distinct B-exciton emission, enhanced p-type conduction and broad spectral response can provide new platforms for probing new physics and offer novel materials for optoelectronic applications.

Cite this article

Biyuan Zheng , Xingxia Sun , Weihao Zheng , Chenguang Zhu , Chao Ma , Anlian Pan , Dong Li , Shengman Li . Vapor growth of V-doped MoS2 monolayers with enhanced B-exciton emission and broad spectral response[J]. Frontiers of Optoelectronics, 2023 , 16(4) : 42 . DOI: 10.1007/s12200-023-00097-w

1
Li, W., Gong, X., Yu, Z., Ma, L., Sun, W., Gao, S., Koroglu, C., Wang, W., Liu, L., Li, T., Ning, H., Fan, D., Xu, Y., Tu, X., Xu, T., Sun, L., Wang, W., Lu, J., Ni, Z., Li, J., Duan, X., Wang, P., Nie, Y., Qiu, H., Shi, Y., Pop, E., Wang, J., Wang, X.: Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613(7943), 274–279 (2023)

DOI

2
Kang, K., Xie, S., Huang, L., Han, Y., Huang, P.Y., Mak, K.F., Kim, C.-J., Muller, D., Park, J.: High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520(7549), 656–660 (2015)

DOI

3
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotech. 6(3), 147–150 (2011)

DOI

4
Zi, Y., Zhu, J., Hu, L., Wang, M., Huang, W.: Nanoengineering of tin monosulfide (SnS)-based structures for emerging applications. Small Science 2(3), 2100098 (2022)

DOI

5
Li, T., Guo, W., Ma, L., Li, W., Yu, Z., Han, Z., Gao, S., Liu, L., Fan, D., Wang, Z., Yang, Y., Lin, W., Luo, Z., Chen, X., Dai, N., Tu, X., Pan, D., Yao, Y., Wang, P., Nie, Y., Wang, J., Shi, Y., Wang, X.: Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotech. 16(11), 1201–1207 (2021)

DOI

6
Lin, Z., Liu, Y., Halim, U., Ding, M., Liu, Y., Wang, Y., Jia, C., Chen, P., Duan, X., Wang, C., Song, F., Li, M., Wan, C., Huang, Y., Duan, X.: Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562(7726), 254–258 (2018)

DOI

7
Huang, W., Zhu, J., Wang, M., Hu, L., Tang, Y., Shu, Y., Xie, Z., Zhang, H.: Emerging mono-elemental bismuth nanostructures: controlled synthesis and their versatile applications. Adv. Funct. Mater.Funct. Mater. 31(10), 2007584 (2021)

DOI

8
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., Kis, A.: Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotech. 8(7), 497–501 (2013)

DOI

9
Zhu, J., Wei, S., Tang, J., Hu, Y., Dai, X., Zi, Y., Wang, M., Xiang, Y., Huang, W.: MXene V2CTx nanosheet/bismuth quantum dot-based heterostructures for enhanced flexible photodetection and nonlinear photonics. ACS Appl. Nano Mater. 6(14), 13629–13636 (2023)

DOI

10
Huang, W., Wang, M., Hu, L., Wang, C., Xie, Z., Zhang, H.: Recent advances in semiconducting monoelemental selenium nanostructures for device applications. Adv. Funct. Mater. Funct. Mater. 30(42), 2003301 (2020)

DOI

11
Wang, C., Xu, J., Wang, Y., Song, Y., Guo, J., Huang, W., Ge, Y., Hu, L., Liu, J., Zhang, H.: MXene (Ti2NTx): synthesis, characteristics and application as a thermo-optical switcher for all-optical wavelength tuning laser. Sci. China Mater. 64(1), 259–265 (2021)

DOI

12
Rong, K., Duan, X., Wang, B., Reichenberg, D., Cohen, A., Liu, C.-L., Mohapatra, P.K., Patsha, A., Gorovoy, V., Mukherjee, S., Kleiner, V., Ismach, A., Koren, E., Hasman, E.: Spin-valley Rashba monolayer laser. Nat. Mater. 22(9), 1085–1093 (2023)

DOI

13
Zi, Y., Hu, Y., Pu, J., Wang, M., Huang, W.: Recent progress in interface engineering of nanostructures for photoelectrochemical energy harvesting applications. Small 19(19), 2208274 (2023)

DOI

14
Mak, K.F., He, K., Shan, J., Heinz, T.F.: Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotech. 7(8), 494 (2012)

DOI

15
Huang, W., Ma, C., Li, C., Zhang, Y., Hu, L., Chen, T., Tang, Y., Ju, J., Zhang, H.: Highly stable MXene (V2CTx)-based harmonic pulse generation. Nanophotonics 9(8), 2577–2585 (2020)

DOI

16
Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010)

DOI

17
Steinhoff, A., Kim, J.H., Jahnke, F., Rosner, M., Kim, D.S., Lee, C., Han, G.H., Jeong, M.S., Wehling, T.O., Gies, C.: Efficient excitonic photoluminescence in direct and indirect band gap monolayer MoS2. Nano Lett. 15(10), 6841–6847 (2015)

DOI

18
Wu, F., Qu, F., MacDonald, A.H.: Exciton band structure of monolayer MoS2. Phys. Rev. B 91(7), 075310 (2015)

DOI

19
Cheiwchanchamnangij, T., Lambrecht, W.R.L.: Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 85(20), 205302 (2012)

DOI

20
Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G., Wang, F.: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010)

DOI

21
Berghäuser, G., Malic, E.: Analytical approach to excitonic properties of MoS2. Phys. Rev. B 89(12), 125309 (2014)

DOI

22
Zhou, W., Zou, X., Najmaei, S., Liu, Z., Shi, Y., Kong, J., Lou, J., Ajayan, P.M., Yakobson, B.I., Idrobo, J.-C.: Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13(6), 2615–2622 (2013)

DOI

23
Addou, R., Colombo, L., Wallace, R.M.: Surface defects on natural MoS2. ACS Appl. Mater. Interfaces 7(22), 11921–11929 (2015)

DOI

24
Duong, D.L., Yun, S.J., Kim, Y., Kim, S.-G., Lee, Y.H.: Long-range ferromagnetic ordering in vanadium-doped WSe2 semiconductor. Appl. Phys. Lett. 115(24), 242406 (2019)

DOI

25
Fan, S., Yun, S.J., Yu, W.J., Lee, Y.H.: Tailoring quantum tunneling in a vanadium-doped WSe2/SnSe2 heterostructure. Adv. Sci. 7(3), 1902751 (2020)

DOI

26
Duan, H., Guo, P., Wang, C., Tan, H., Hu, W., Yan, W., Ma, C., Cai, L., Song, L., Zhang, W., Sun, Z., Wang, L., Zhao, W., Yin, Y., Li, X., Wei, S.: Beating the exclusion rule against the coexistence of robust luminescence and ferromagnetism in chalcogenide monolayers. Nat. Commun.Commun. 10(1), 1584 (2019)

DOI

27
Zhou, J., Lin, J., Sims, H., Jiang, C., Cong, C., Brehm, J.A., Zhang, Z., Niu, L., Chen, Y., Zhou, Y., Wang, Y., Liu, F., Zhu, C., Yu, T., Suenaga, K., Mishra, R., Pantelides, S.T., Zhu, Z.-G., Gao, W., Liu, Z., Zhou, W.: Synthesis of co-doped MoS2 monolayers with enhanced valley splitting. Adv. Mater. 32(29), 2003123 (2020)

DOI

28
Zou, J., Cai, Z., Lai, Y., Tan, J., Zhang, R., Feng, S., Wang, G., Lin, J., Liu, B., Cheng, H.-M.: Doping concentration modulation in vanadium-doped monolayer molybdenum disulfide for synaptic transistors. ACS Nano 15(4), 7340–7347 (2021)

DOI

29
Zhang, L., Wang, Z., Zhang, J., Chen, B., Liang, Z., Quan, X., Dai, Y., Huang, J., Wang, Y., Liang, S.-J., Long, M., Si, M., Miao, F., Peng, Y.: Quasi-continuous tuning of carrier polarity in monolayered molybdenum dichalcogenides through substitutional vanadium doping. Adv. Funct. Mater.Funct. Mater. 32(46), 2204760 (2022)

DOI

30
Zhang, J., Zhu, Y., Tebyetekerwa, M., Li, D., Liu, D., Lei, W., Wang, L., Zhang, Y., Lu, Y.: Vanadium-doped monolayer MoS2 with tunable optical properties for field-effect transistors. ACS Appl. Nano Mater. 4(1), 769–777 (2020)

DOI

31
Zhou, J., Lin, J., Huang, X., Zhou, Y., Chen, Y., Xia, J., Wang, H., Xie, Y., Yu, H., Lei, J., Wu, D., Liu, F., Fu, Q., Zeng, Q., Hsu, C.H., Yang, C., Lu, L., Yu, T., Shen, Z., Lin, H., Yakobson, B.I., Liu, Q., Suenaga, K., Liu, G., Liu, Z.: A library of atomically thin metal chalcogenides. Nature 556(7701), 355–359 (2018)

DOI

32
Li, S., Wang, S., Tang, D.-M., Zhao, W., Xu, H., Chu, L., Bando, Y., Golberg, D., Eda, G.: Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 1(1), 60–66 (2015)

DOI

33
Ganta, D., Sinha, S., Haasch, R.T.: 2-D material molybdenum disulfide analyzed by XPS. Surf. Sci. Spectra 21(1), 19–27 (2014)

DOI

34
Qin, J.-K., Shao, W.-Z., Xu, C.-Y., Li, Y., Ren, D.-D., Song, X.-G., Zhen, L.: Chemical vapor deposition growth of degenerate p-Type Mo-doped ReS2 films and their homojunction. ACS Appl. Mater. Interfaces 9(18), 15583–15591 (2017)

DOI

35
Gao, J., Kim, Y.D., Liang, L., Idrobo, J.C., Chow, P., Tan, J., Li, B., Li, L., Sumpter, B.G., Lu, T.-M., Meunier, V., Hone, J., Koratkar, N.: Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 28(44), 9735–9743 (2016)

DOI

36
Gao, D., Xue, Q., Mao, X., Wang, W., Xu, Q., Xue, D.: Ferromagnetism in ultrathin VS2 nanosheets. J. Mater. Chem. C 1(37), 5909–5916 (2013)

DOI

37
Li, Y., Zhang, J., Zheng, G., Sun, Y., Hong, S.S., Xiong, F., Wang, S., Lee, H.R., Cui, Y.: Lateral and vertical two-dimensional layered topological insulator heterostructures. ACS Nano 9(11), 10916–10921 (2015)

DOI

38
Fang, W., Zhao, H., Xie, Y., Fang, J., Xu, J., Chen, Z.: Facile hydrothermal synthesis of VS2/graphene nanocomposites with superior high-rate capability as lithium-ion battery cathodes. ACS Appl. Mater. Interfaces 7(23), 13044–13052 (2015)

DOI

39
Sasaki, S., Kobayashi, Y., Liu, Z., Suenaga, K., Maniwa, Y., Miyauchi, Y., Miyata, Y.: Growth and optical properties of Nbdoped WS2 monolayers. Appl. Phys. Express 9(7), 071201 (2016)

DOI

40
Ly, T.H., Yun, S.J., Thi, Q.H., Zhao, J.: Edge delamination of monolayer transition metal dichalcogenides. ACS Nano 11(7), 7534–7541 (2017)

DOI

41
Kaplan, D., Mills, K., Lee, J., Torrel, S., Swaminathan, V.: Excitation intensity dependent photoluminescence of annealed two-dimensional MoS2 grown by chemical vapor deposition. J. Appl. Phys. 119(21), 214301 (2016)

DOI

42
Yan, T., Qiao, X., Liu, X., Tan, P., Zhang, X.: Photoluminescence properties and exciton dynamics in monolayer WSe2. Appl. Phys. Lett. 105(10), 101901 (2014)

DOI

43
Tiong, K.K., Shou, T.S., Ho, C.H.: Temperature dependence piezoreflectance study of the effect of doping MoS2 with rhenium. J. Phys. Condens. MatterCondens. Matter 12(14), 3441 (2000)

DOI

44
Perea-López, N., Lin, Z., Pradhan, N.R., Iñiguez-Rábago, A., Laura Elías, A., McCreary, A., Lou, J., Ajayan, P.M., Terrones, H., Balicas, L., Terrones, M.: CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage. 2D Mater. 1(1), 011004 (2014)

DOI

45
Nie, C., Yu, L., Wei, X., Shen, J., Lu, W., Chen, W., Feng, S., Shi, H.: Ultrafast growth of large-area monolayer MoS2 film via gold foil assistant CVD for a highly sensitive photodetector. Nanotechnology 28(27), (2017)

DOI

46
Zhou, Y.H., An, H.N., Gao, C., Zheng, Z.Q., Wang, B.: UV–Vis-NIR photodetector based on monolayer MoS2. Mater. Lett. 237, 298–302 (2019)

DOI

47
Zhang, W., Chiu, M.-H., Chen, C.-H., Chen, W., Li, L.-J., Wee, A.T.S.: Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 8(8), 8653–8661 (2014)

DOI

48
Sun, M., Fang, Q., Xie, D., Sun, Y., Qian, L., Xu, J., Xiao, P., Teng, C., Li, W., Ren, T., Zhang, Y.: Heterostructured graphene quantum dot/WSe2/Si photodetector with suppressed dark current and improved detectivity. Nano Res. 11(6), 3233–3243 (2018)

DOI

49
Vabbina, P., Choudhary, N., Chowdhury, A.-A., Sinha, R., Karabiyik, M., Das, S., Choi, W., Pala, N.: Highly sensitive wide band-width photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky Junction. ACS Appl. Mater. Interfaces 7(28), 15206–15213 (2015)

DOI

50
Yang, T., Zheng, B., Wang, Z., Xu, T., Pan, C., Zou, J., Zhang, X., Qi, Z., Liu, H., Feng, Y., Hu, W., Miao, F., Sun, L., Duan, X., Pan, A.: Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun. Commun. 8(1), 1906 (2017)

DOI

51
Zou, Z., Li, D., Liang, J., Zhang, X., Liu, H., Zhu, C., Yang, X., Li, L., Zheng, B., Sun, X., Zeng, Z., Yi, J., Zhuang, X., Wang, X., Pan, A.: Epitaxial synthesis of ultrathin beta-In2Se3/MoS2 heterostructures with high visible/near-infrared photoresponse. Nanoscale 12(11), 6480–6488 (2020)

DOI

52
Sun, X., Liu, Y., Shi, J., Si, C., Du, J., Liu, X., Jiang, C., Yang, S.: Controllable synthesis of 2H–1T’ MoxRe(1–x)S2 lateral hetero-structures and their tunable optoelectronic properties. Adv. Mater. 35(38), 2304171 (2023)

DOI

Outlines

/