Vapor growth of V-doped MoS2 monolayers with enhanced B-exciton emission and broad spectral response

Biyuan Zheng, Xingxia Sun, Weihao Zheng, Chenguang Zhu, Chao Ma, Anlian Pan, Dong Li, Shengman Li

PDF(2063 KB)
PDF(2063 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (4) : 42. DOI: 10.1007/s12200-023-00097-w
RESEARCH ARTICLE
RESEARCH ARTICLE

Vapor growth of V-doped MoS2 monolayers with enhanced B-exciton emission and broad spectral response

Author information +
History +

Abstract

Dynamically engineering the optical and electrical properties in two-dimensional (2D) materials is of great significance for designing the related functions and applications. The introduction of foreign-atoms has previously been proven to be a feasible way to tune the band structure and related properties of 3D materials; however, this approach still remains to be explored in 2D materials. Here, we systematically demonstrate the growth of vanadium-doped molybdenum disulfide (V-doped MoS2) monolayers via an alkali metal-assisted chemical vapor deposition method. Scanning transmission electron microscopy demonstrated that V atoms substituted the Mo atoms and became uniformly distributed in the MoS2 monolayers. This was also confirmed by Raman and X-ray photoelectron spectroscopy. Power-dependent photoluminescence spectra clearly revealed the enhanced B-exciton emission characteristics in the V-doped MoS2 monolayers (with low doping concentration). Most importantly, through temperature-dependent study, we observed efficient valley scattering of the B-exciton, greatly enhancing its emission intensity. Carrier transport experiments indicated that typical p-type conduction gradually arisen and was enhanced with increasing V composition in the V-doped MoS2, where a clear n-type behavior transited first to ambipolar and then to lightly p-type charge carrier transport. In addition, visible to infrared wide-band photodetectors based on V-doped MoS2 monolayers (with low doping concentration) were demonstrated. The V-doped MoS2 monolayers with distinct B-exciton emission, enhanced p-type conduction and broad spectral response can provide new platforms for probing new physics and offer novel materials for optoelectronic applications.

Graphical abstract

Keywords

Atomic substitution / V-doped MoS2 / Distinct B-exciton / Broad spectral response

Cite this article

Download citation ▾
Biyuan Zheng, Xingxia Sun, Weihao Zheng, Chenguang Zhu, Chao Ma, Anlian Pan, Dong Li, Shengman Li. Vapor growth of V-doped MoS2 monolayers with enhanced B-exciton emission and broad spectral response. Front. Optoelectron., 2023, 16(4): 42 https://doi.org/10.1007/s12200-023-00097-w

References

[1]
Li, W., Gong, X., Yu, Z., Ma, L., Sun, W., Gao, S., Koroglu, C., Wang, W., Liu, L., Li, T., Ning, H., Fan, D., Xu, Y., Tu, X., Xu, T., Sun, L., Wang, W., Lu, J., Ni, Z., Li, J., Duan, X., Wang, P., Nie, Y., Qiu, H., Shi, Y., Pop, E., Wang, J., Wang, X.: Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613(7943), 274–279 (2023)
CrossRef Google scholar
[2]
Kang, K., Xie, S., Huang, L., Han, Y., Huang, P.Y., Mak, K.F., Kim, C.-J., Muller, D., Park, J.: High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520(7549), 656–660 (2015)
CrossRef Google scholar
[3]
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotech. 6(3), 147–150 (2011)
CrossRef Google scholar
[4]
Zi, Y., Zhu, J., Hu, L., Wang, M., Huang, W.: Nanoengineering of tin monosulfide (SnS)-based structures for emerging applications. Small Science 2(3), 2100098 (2022)
CrossRef Google scholar
[5]
Li, T., Guo, W., Ma, L., Li, W., Yu, Z., Han, Z., Gao, S., Liu, L., Fan, D., Wang, Z., Yang, Y., Lin, W., Luo, Z., Chen, X., Dai, N., Tu, X., Pan, D., Yao, Y., Wang, P., Nie, Y., Wang, J., Shi, Y., Wang, X.: Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotech. 16(11), 1201–1207 (2021)
CrossRef Google scholar
[6]
Lin, Z., Liu, Y., Halim, U., Ding, M., Liu, Y., Wang, Y., Jia, C., Chen, P., Duan, X., Wang, C., Song, F., Li, M., Wan, C., Huang, Y., Duan, X.: Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562(7726), 254–258 (2018)
CrossRef Google scholar
[7]
Huang, W., Zhu, J., Wang, M., Hu, L., Tang, Y., Shu, Y., Xie, Z., Zhang, H.: Emerging mono-elemental bismuth nanostructures: controlled synthesis and their versatile applications. Adv. Funct. Mater.Funct. Mater. 31(10), 2007584 (2021)
CrossRef Google scholar
[8]
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., Kis, A.: Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotech. 8(7), 497–501 (2013)
CrossRef Google scholar
[9]
Zhu, J., Wei, S., Tang, J., Hu, Y., Dai, X., Zi, Y., Wang, M., Xiang, Y., Huang, W.: MXene V2CTx nanosheet/bismuth quantum dot-based heterostructures for enhanced flexible photodetection and nonlinear photonics. ACS Appl. Nano Mater. 6(14), 13629–13636 (2023)
CrossRef Google scholar
[10]
Huang, W., Wang, M., Hu, L., Wang, C., Xie, Z., Zhang, H.: Recent advances in semiconducting monoelemental selenium nanostructures for device applications. Adv. Funct. Mater. Funct. Mater. 30(42), 2003301 (2020)
CrossRef Google scholar
[11]
Wang, C., Xu, J., Wang, Y., Song, Y., Guo, J., Huang, W., Ge, Y., Hu, L., Liu, J., Zhang, H.: MXene (Ti2NTx): synthesis, characteristics and application as a thermo-optical switcher for all-optical wavelength tuning laser. Sci. China Mater. 64(1), 259–265 (2021)
CrossRef Google scholar
[12]
Rong, K., Duan, X., Wang, B., Reichenberg, D., Cohen, A., Liu, C.-L., Mohapatra, P.K., Patsha, A., Gorovoy, V., Mukherjee, S., Kleiner, V., Ismach, A., Koren, E., Hasman, E.: Spin-valley Rashba monolayer laser. Nat. Mater. 22(9), 1085–1093 (2023)
CrossRef Google scholar
[13]
Zi, Y., Hu, Y., Pu, J., Wang, M., Huang, W.: Recent progress in interface engineering of nanostructures for photoelectrochemical energy harvesting applications. Small 19(19), 2208274 (2023)
CrossRef Google scholar
[14]
Mak, K.F., He, K., Shan, J., Heinz, T.F.: Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotech. 7(8), 494 (2012)
CrossRef Google scholar
[15]
Huang, W., Ma, C., Li, C., Zhang, Y., Hu, L., Chen, T., Tang, Y., Ju, J., Zhang, H.: Highly stable MXene (V2CTx)-based harmonic pulse generation. Nanophotonics 9(8), 2577–2585 (2020)
CrossRef Google scholar
[16]
Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010)
CrossRef Google scholar
[17]
Steinhoff, A., Kim, J.H., Jahnke, F., Rosner, M., Kim, D.S., Lee, C., Han, G.H., Jeong, M.S., Wehling, T.O., Gies, C.: Efficient excitonic photoluminescence in direct and indirect band gap monolayer MoS2. Nano Lett. 15(10), 6841–6847 (2015)
CrossRef Google scholar
[18]
Wu, F., Qu, F., MacDonald, A.H.: Exciton band structure of monolayer MoS2. Phys. Rev. B 91(7), 075310 (2015)
CrossRef Google scholar
[19]
Cheiwchanchamnangij, T., Lambrecht, W.R.L.: Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 85(20), 205302 (2012)
CrossRef Google scholar
[20]
Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G., Wang, F.: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010)
CrossRef Google scholar
[21]
Berghäuser, G., Malic, E.: Analytical approach to excitonic properties of MoS2. Phys. Rev. B 89(12), 125309 (2014)
CrossRef Google scholar
[22]
Zhou, W., Zou, X., Najmaei, S., Liu, Z., Shi, Y., Kong, J., Lou, J., Ajayan, P.M., Yakobson, B.I., Idrobo, J.-C.: Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13(6), 2615–2622 (2013)
CrossRef Google scholar
[23]
Addou, R., Colombo, L., Wallace, R.M.: Surface defects on natural MoS2. ACS Appl. Mater. Interfaces 7(22), 11921–11929 (2015)
CrossRef Google scholar
[24]
Duong, D.L., Yun, S.J., Kim, Y., Kim, S.-G., Lee, Y.H.: Long-range ferromagnetic ordering in vanadium-doped WSe2 semiconductor. Appl. Phys. Lett. 115(24), 242406 (2019)
CrossRef Google scholar
[25]
Fan, S., Yun, S.J., Yu, W.J., Lee, Y.H.: Tailoring quantum tunneling in a vanadium-doped WSe2/SnSe2 heterostructure. Adv. Sci. 7(3), 1902751 (2020)
CrossRef Google scholar
[26]
Duan, H., Guo, P., Wang, C., Tan, H., Hu, W., Yan, W., Ma, C., Cai, L., Song, L., Zhang, W., Sun, Z., Wang, L., Zhao, W., Yin, Y., Li, X., Wei, S.: Beating the exclusion rule against the coexistence of robust luminescence and ferromagnetism in chalcogenide monolayers. Nat. Commun.Commun. 10(1), 1584 (2019)
CrossRef Google scholar
[27]
Zhou, J., Lin, J., Sims, H., Jiang, C., Cong, C., Brehm, J.A., Zhang, Z., Niu, L., Chen, Y., Zhou, Y., Wang, Y., Liu, F., Zhu, C., Yu, T., Suenaga, K., Mishra, R., Pantelides, S.T., Zhu, Z.-G., Gao, W., Liu, Z., Zhou, W.: Synthesis of co-doped MoS2 monolayers with enhanced valley splitting. Adv. Mater. 32(29), 2003123 (2020)
CrossRef Google scholar
[28]
Zou, J., Cai, Z., Lai, Y., Tan, J., Zhang, R., Feng, S., Wang, G., Lin, J., Liu, B., Cheng, H.-M.: Doping concentration modulation in vanadium-doped monolayer molybdenum disulfide for synaptic transistors. ACS Nano 15(4), 7340–7347 (2021)
CrossRef Google scholar
[29]
Zhang, L., Wang, Z., Zhang, J., Chen, B., Liang, Z., Quan, X., Dai, Y., Huang, J., Wang, Y., Liang, S.-J., Long, M., Si, M., Miao, F., Peng, Y.: Quasi-continuous tuning of carrier polarity in monolayered molybdenum dichalcogenides through substitutional vanadium doping. Adv. Funct. Mater.Funct. Mater. 32(46), 2204760 (2022)
CrossRef Google scholar
[30]
Zhang, J., Zhu, Y., Tebyetekerwa, M., Li, D., Liu, D., Lei, W., Wang, L., Zhang, Y., Lu, Y.: Vanadium-doped monolayer MoS2 with tunable optical properties for field-effect transistors. ACS Appl. Nano Mater. 4(1), 769–777 (2020)
CrossRef Google scholar
[31]
Zhou, J., Lin, J., Huang, X., Zhou, Y., Chen, Y., Xia, J., Wang, H., Xie, Y., Yu, H., Lei, J., Wu, D., Liu, F., Fu, Q., Zeng, Q., Hsu, C.H., Yang, C., Lu, L., Yu, T., Shen, Z., Lin, H., Yakobson, B.I., Liu, Q., Suenaga, K., Liu, G., Liu, Z.: A library of atomically thin metal chalcogenides. Nature 556(7701), 355–359 (2018)
CrossRef Google scholar
[32]
Li, S., Wang, S., Tang, D.-M., Zhao, W., Xu, H., Chu, L., Bando, Y., Golberg, D., Eda, G.: Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 1(1), 60–66 (2015)
CrossRef Google scholar
[33]
Ganta, D., Sinha, S., Haasch, R.T.: 2-D material molybdenum disulfide analyzed by XPS. Surf. Sci. Spectra 21(1), 19–27 (2014)
CrossRef Google scholar
[34]
Qin, J.-K., Shao, W.-Z., Xu, C.-Y., Li, Y., Ren, D.-D., Song, X.-G., Zhen, L.: Chemical vapor deposition growth of degenerate p-Type Mo-doped ReS2 films and their homojunction. ACS Appl. Mater. Interfaces 9(18), 15583–15591 (2017)
CrossRef Google scholar
[35]
Gao, J., Kim, Y.D., Liang, L., Idrobo, J.C., Chow, P., Tan, J., Li, B., Li, L., Sumpter, B.G., Lu, T.-M., Meunier, V., Hone, J., Koratkar, N.: Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 28(44), 9735–9743 (2016)
CrossRef Google scholar
[36]
Gao, D., Xue, Q., Mao, X., Wang, W., Xu, Q., Xue, D.: Ferromagnetism in ultrathin VS2 nanosheets. J. Mater. Chem. C 1(37), 5909–5916 (2013)
CrossRef Google scholar
[37]
Li, Y., Zhang, J., Zheng, G., Sun, Y., Hong, S.S., Xiong, F., Wang, S., Lee, H.R., Cui, Y.: Lateral and vertical two-dimensional layered topological insulator heterostructures. ACS Nano 9(11), 10916–10921 (2015)
CrossRef Google scholar
[38]
Fang, W., Zhao, H., Xie, Y., Fang, J., Xu, J., Chen, Z.: Facile hydrothermal synthesis of VS2/graphene nanocomposites with superior high-rate capability as lithium-ion battery cathodes. ACS Appl. Mater. Interfaces 7(23), 13044–13052 (2015)
CrossRef Google scholar
[39]
Sasaki, S., Kobayashi, Y., Liu, Z., Suenaga, K., Maniwa, Y., Miyauchi, Y., Miyata, Y.: Growth and optical properties of Nbdoped WS2 monolayers. Appl. Phys. Express 9(7), 071201 (2016)
CrossRef Google scholar
[40]
Ly, T.H., Yun, S.J., Thi, Q.H., Zhao, J.: Edge delamination of monolayer transition metal dichalcogenides. ACS Nano 11(7), 7534–7541 (2017)
CrossRef Google scholar
[41]
Kaplan, D., Mills, K., Lee, J., Torrel, S., Swaminathan, V.: Excitation intensity dependent photoluminescence of annealed two-dimensional MoS2 grown by chemical vapor deposition. J. Appl. Phys. 119(21), 214301 (2016)
CrossRef Google scholar
[42]
Yan, T., Qiao, X., Liu, X., Tan, P., Zhang, X.: Photoluminescence properties and exciton dynamics in monolayer WSe2. Appl. Phys. Lett. 105(10), 101901 (2014)
CrossRef Google scholar
[43]
Tiong, K.K., Shou, T.S., Ho, C.H.: Temperature dependence piezoreflectance study of the effect of doping MoS2 with rhenium. J. Phys. Condens. MatterCondens. Matter 12(14), 3441 (2000)
CrossRef Google scholar
[44]
Perea-López, N., Lin, Z., Pradhan, N.R., Iñiguez-Rábago, A., Laura Elías, A., McCreary, A., Lou, J., Ajayan, P.M., Terrones, H., Balicas, L., Terrones, M.: CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage. 2D Mater. 1(1), 011004 (2014)
CrossRef Google scholar
[45]
Nie, C., Yu, L., Wei, X., Shen, J., Lu, W., Chen, W., Feng, S., Shi, H.: Ultrafast growth of large-area monolayer MoS2 film via gold foil assistant CVD for a highly sensitive photodetector. Nanotechnology 28(27), (2017)
CrossRef Google scholar
[46]
Zhou, Y.H., An, H.N., Gao, C., Zheng, Z.Q., Wang, B.: UV–Vis-NIR photodetector based on monolayer MoS2. Mater. Lett. 237, 298–302 (2019)
CrossRef Google scholar
[47]
Zhang, W., Chiu, M.-H., Chen, C.-H., Chen, W., Li, L.-J., Wee, A.T.S.: Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 8(8), 8653–8661 (2014)
CrossRef Google scholar
[48]
Sun, M., Fang, Q., Xie, D., Sun, Y., Qian, L., Xu, J., Xiao, P., Teng, C., Li, W., Ren, T., Zhang, Y.: Heterostructured graphene quantum dot/WSe2/Si photodetector with suppressed dark current and improved detectivity. Nano Res. 11(6), 3233–3243 (2018)
CrossRef Google scholar
[49]
Vabbina, P., Choudhary, N., Chowdhury, A.-A., Sinha, R., Karabiyik, M., Das, S., Choi, W., Pala, N.: Highly sensitive wide band-width photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky Junction. ACS Appl. Mater. Interfaces 7(28), 15206–15213 (2015)
CrossRef Google scholar
[50]
Yang, T., Zheng, B., Wang, Z., Xu, T., Pan, C., Zou, J., Zhang, X., Qi, Z., Liu, H., Feng, Y., Hu, W., Miao, F., Sun, L., Duan, X., Pan, A.: Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun. Commun. 8(1), 1906 (2017)
CrossRef Google scholar
[51]
Zou, Z., Li, D., Liang, J., Zhang, X., Liu, H., Zhu, C., Yang, X., Li, L., Zheng, B., Sun, X., Zeng, Z., Yi, J., Zhuang, X., Wang, X., Pan, A.: Epitaxial synthesis of ultrathin beta-In2Se3/MoS2 heterostructures with high visible/near-infrared photoresponse. Nanoscale 12(11), 6480–6488 (2020)
CrossRef Google scholar
[52]
Sun, X., Liu, Y., Shi, J., Si, C., Du, J., Liu, X., Jiang, C., Yang, S.: Controllable synthesis of 2H–1T’ MoxRe(1–x)S2 lateral hetero-structures and their tunable optoelectronic properties. Adv. Mater. 35(38), 2304171 (2023)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(2063 KB)

Accesses

Citations

Detail

Sections
Recommended

/