LETTER

Enhancement of silicon sub-bandgap photodetection by helium-ion implantation

  • Zhao Wang 1,2 ,
  • Xiaolei Wen 3 ,
  • Kai Zou 1,2 ,
  • Yun Meng 1,2 ,
  • Jinwei Zeng 4,5 ,
  • Jian Wang 4,5 ,
  • Huan Hu , 6,7 ,
  • Xiaolong Hu , 1,2,4
Expand
  • 1. School of Precision Instrument and Optoelectronic Engineering, Tianjin University, Tianjin 300072, China
  • 2. Key Laboratory of Optoelectronic Information Science and Technology, Ministry of Education, Tianjin 300072, China
  • 3. Center for Micro and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 230026, China
  • 4. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 5. Optics Valley Laboratory, Wuhan 430074, China
  • 6. ZJUI Institute, International Campus, Zhejiang University, Haining 311400, China
  • 7. State Key Laboratory of Fluidic Power & Mechanical Systems, Zhejiang University, Hangzhou 310027, China
huanhu@intl.zju.edu.cn
xiaolonghu@tju.edu.cn

Received date: 13 Sep 2023

Accepted date: 03 Nov 2023

Copyright

2023 The Author(s) 2023

Abstract

Silicon sub-bandgap photodetectors can detect light at the infrared telecommunication wavelengths but with relatively weak photo-response. In this work, we demonstrate the enhancement of sub-bandgap photodetection in silicon by helium-ion implantation, without affecting the transparency that is an important beneficial feature of this type of photodetectors. With an implantation dose of 1 × 1013 ions/cm2, the minimal detectable optical power can be improved from – 33.2 to – 63.1 dBm, or, by 29.9 dB, at the wavelength of 1550 nm, and the photo-response at the same optical power (– 10 dBm) can be enhanced by approximately 18.8 dB. Our work provides a method for strategically modifying the intrinsic trade-off between transparency and strong photo-responses of this type of photodetectors.

Cite this article

Zhao Wang , Xiaolei Wen , Kai Zou , Yun Meng , Jinwei Zeng , Jian Wang , Huan Hu , Xiaolong Hu . Enhancement of silicon sub-bandgap photodetection by helium-ion implantation[J]. Frontiers of Optoelectronics, 2023 , 16(4) : 41 . DOI: 10.1007/s12200-023-00096-x

1
Morichetti, F., Grillanda, S., Carminati, M., Ferrari, G., Sampietro, M., Strain, M.J., Sorel, M., Melloni, A.: Non-invasive on-chip light observation by contactless waveguide conductivity monitoring. IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014)

DOI

2
Grillanda, S., Carminati, M., Morichetti, F., Ciccarella, P., Annoni, A., Ferrari, G., Strain, M., Sorel, M., Sampietro, M., Melloni, A.: Noninvasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica 1(3), 129–136 (2014)

DOI

3
Grimaldi, V., Zanetto, F., Toso, F., Vita, C., Ferrari, G.: Noninvasive light sensor with enhanced sensitivity for photonic integrated circuits. In 17th conference on Ph.D. research in microelectronics and electronics (PRIME). IEEE, pp. 285–288 (2022)

DOI

4
Wang, Z., Zhang, Z., Zou, K., Meng, Y., Liu, H., Hu, X.: Noise properties of contactless integrated photonic probes on silicon waveguides. Appl. Opt. 62(1), 178–182 (2023)

DOI

5
Wang, Z., Liu, H., Zhang, Z., Zou, K., Hu, X.: Infrared photo-conductor based on surface-state absorption in silicon. Opt. Lett. 46(11), 2577–2580 (2021)

DOI

6
Zhang, Z., Wang, Z., Zou, K., Yang, T., Hu, X.: Temperature-dependent characteristics of infrared photodetectors based on surface-state absorption in silicon. Appl. Opt. 60(30), 9347–9351 (2021)

DOI

7
Wang, Z., Zhang, Z., Zou, K., Meng, Y., Hu, X.: Silicon four-quadrant photodetector working at the 1550-nm telecommunication wavelength. Opt. Lett. 47(16), 4048–4051 (2022)

DOI

8
Allen, F.I.: A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope. Beilstein J. Nanotechnol. 12(1), 633–664 (2021)

DOI

9
Wen, X., Mao, R., Hu, H.: 3-D nanofabrication of silicon and nanostructure fine-tuning via helium ion implantation. Adv. Mater. Interfaces 9(10), 2101643 (2022)

DOI

10
Liu, Y., Chow, C.W., Cheung, W.Y., Tsang, H.K.: In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides. IEEE Photon. Technol. Lett. 18(17), 1882–1884 (2006)

DOI

11
Wang, B., Zhang, Y., Tang, L., Deng, G., Teng, K., Wu, G., Song, L.: Silicon based mesa heterojunction photodetector. Earth and Space: From Infrared to Terahertz (ESIT 2022). SPIE 12505, 71–75 (2023)

DOI

12
Zheng, X., Ma, S., Zhang, Y., Wang, M., Fan, H., Feng, H.: Enhancement of CsPbBr3 perovskite single-crystal photodetector performance via Zr ion implantation. J. Phys. Chem. C 127, 11780–11786 (2023)

DOI

13
Wang, Z., Yuan, L., Wang, Y., Wang, J., Zhang, Y., Jia, R.: Mg ion implantation and post-annealing effect on the photoelectrical performance of a β-Ga2O3 photodetector. Appl. Opt. 62(15), 3848–3854 (2023)

DOI

14
Li, C., Zhao, J., Liu, X., Ren, Z., Yang, Y., Chen, Z., Chen, Q., Sun, H.: Record-breaking-high-responsivity silicon photodetector at infrared 1.31 and 1.55 µm by argon doping technique. IEEE Trans. Electron Devices 70(5), 2364–2369 (2023)

DOI

15
Bornacelli, J., Araiza-Sixtos, F., Torres-Torres, C., Hernández-Acosta, M., Oliver, A., Angel-Rojo, R.: Driving third-order optical nonlinearities in photoluminescent si nanoparticles by nitrogen co-implantation in a silica matrix. Materials 15(16), 5670 (2022)

DOI

16
Cho, E., Zhou, Y., Cho, J., Cybart, S.: Superconducting nano Josephson junctions patterned with a focused helium ion beam. Appl. Phys. Let. 113(2), 022604 (2018)

DOI

17
Jadwiszczak, J., Keane, D., Maguire, P., Cullen, C., Zhou, Y., Song, H., Downing, C., Fox, D., McEvoy, N., Zhu, R., Xu, J., Duesberg, G., Liao, Z., Boland, J., Zhang, H.: MoS2 memtransistors fabricated by localized helium ion beam irradiation. ACS Nano 13(12), 14262–14273 (2019)

DOI

18
Ziegler, J., Biersack, J., Littmark, U.: The Stopping and Range of Ions in Solids. Pergamon, New York, (1985). See www.srim.org/for SRIM version, 2013.

19
Chen, H., Luo, X., Poon, A.: Cavity-enhanced photocurrent generation by 1.55 µm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator. Appl. Phys. Lett. 95(17), 171111 (2009)

DOI

Outlines

/