Enhancement of silicon sub-bandgap photodetection by helium-ion implantation

Zhao Wang, Xiaolei Wen, Kai Zou, Yun Meng, Jinwei Zeng, Jian Wang, Huan Hu, Xiaolong Hu

Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (4) : 41.

PDF(1742 KB)
PDF(1742 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (4) : 41. DOI: 10.1007/s12200-023-00096-x
LETTER
LETTER

Enhancement of silicon sub-bandgap photodetection by helium-ion implantation

Author information +
History +

Abstract

Silicon sub-bandgap photodetectors can detect light at the infrared telecommunication wavelengths but with relatively weak photo-response. In this work, we demonstrate the enhancement of sub-bandgap photodetection in silicon by helium-ion implantation, without affecting the transparency that is an important beneficial feature of this type of photodetectors. With an implantation dose of 1 × 1013 ions/cm2, the minimal detectable optical power can be improved from – 33.2 to – 63.1 dBm, or, by 29.9 dB, at the wavelength of 1550 nm, and the photo-response at the same optical power (– 10 dBm) can be enhanced by approximately 18.8 dB. Our work provides a method for strategically modifying the intrinsic trade-off between transparency and strong photo-responses of this type of photodetectors.

Graphical abstract

Keywords

Sub-bandgap optical absorption / Helium-ion implantation / Silicon photodetector / Non-invasive photodetection

Cite this article

Download citation ▾
Zhao Wang, Xiaolei Wen, Kai Zou, Yun Meng, Jinwei Zeng, Jian Wang, Huan Hu, Xiaolong Hu. Enhancement of silicon sub-bandgap photodetection by helium-ion implantation. Front. Optoelectron., 2023, 16(4): 41 https://doi.org/10.1007/s12200-023-00096-x

References

[1]
Morichetti, F., Grillanda, S., Carminati, M., Ferrari, G., Sampietro, M., Strain, M.J., Sorel, M., Melloni, A.: Non-invasive on-chip light observation by contactless waveguide conductivity monitoring. IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014)
CrossRef Google scholar
[2]
Grillanda, S., Carminati, M., Morichetti, F., Ciccarella, P., Annoni, A., Ferrari, G., Strain, M., Sorel, M., Sampietro, M., Melloni, A.: Noninvasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica 1(3), 129–136 (2014)
CrossRef Google scholar
[3]
Grimaldi, V., Zanetto, F., Toso, F., Vita, C., Ferrari, G.: Noninvasive light sensor with enhanced sensitivity for photonic integrated circuits. In 17th conference on Ph.D. research in microelectronics and electronics (PRIME). IEEE, pp. 285–288 (2022)
CrossRef Google scholar
[4]
Wang, Z., Zhang, Z., Zou, K., Meng, Y., Liu, H., Hu, X.: Noise properties of contactless integrated photonic probes on silicon waveguides. Appl. Opt. 62(1), 178–182 (2023)
CrossRef Google scholar
[5]
Wang, Z., Liu, H., Zhang, Z., Zou, K., Hu, X.: Infrared photo-conductor based on surface-state absorption in silicon. Opt. Lett. 46(11), 2577–2580 (2021)
CrossRef Google scholar
[6]
Zhang, Z., Wang, Z., Zou, K., Yang, T., Hu, X.: Temperature-dependent characteristics of infrared photodetectors based on surface-state absorption in silicon. Appl. Opt. 60(30), 9347–9351 (2021)
CrossRef Google scholar
[7]
Wang, Z., Zhang, Z., Zou, K., Meng, Y., Hu, X.: Silicon four-quadrant photodetector working at the 1550-nm telecommunication wavelength. Opt. Lett. 47(16), 4048–4051 (2022)
CrossRef Google scholar
[8]
Allen, F.I.: A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope. Beilstein J. Nanotechnol. 12(1), 633–664 (2021)
CrossRef Google scholar
[9]
Wen, X., Mao, R., Hu, H.: 3-D nanofabrication of silicon and nanostructure fine-tuning via helium ion implantation. Adv. Mater. Interfaces 9(10), 2101643 (2022)
CrossRef Google scholar
[10]
Liu, Y., Chow, C.W., Cheung, W.Y., Tsang, H.K.: In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides. IEEE Photon. Technol. Lett. 18(17), 1882–1884 (2006)
CrossRef Google scholar
[11]
Wang, B., Zhang, Y., Tang, L., Deng, G., Teng, K., Wu, G., Song, L.: Silicon based mesa heterojunction photodetector. Earth and Space: From Infrared to Terahertz (ESIT 2022). SPIE 12505, 71–75 (2023)
CrossRef Google scholar
[12]
Zheng, X., Ma, S., Zhang, Y., Wang, M., Fan, H., Feng, H.: Enhancement of CsPbBr3 perovskite single-crystal photodetector performance via Zr ion implantation. J. Phys. Chem. C 127, 11780–11786 (2023)
CrossRef Google scholar
[13]
Wang, Z., Yuan, L., Wang, Y., Wang, J., Zhang, Y., Jia, R.: Mg ion implantation and post-annealing effect on the photoelectrical performance of a β-Ga2O3 photodetector. Appl. Opt. 62(15), 3848–3854 (2023)
CrossRef Google scholar
[14]
Li, C., Zhao, J., Liu, X., Ren, Z., Yang, Y., Chen, Z., Chen, Q., Sun, H.: Record-breaking-high-responsivity silicon photodetector at infrared 1.31 and 1.55 µm by argon doping technique. IEEE Trans. Electron Devices 70(5), 2364–2369 (2023)
CrossRef Google scholar
[15]
Bornacelli, J., Araiza-Sixtos, F., Torres-Torres, C., Hernández-Acosta, M., Oliver, A., Angel-Rojo, R.: Driving third-order optical nonlinearities in photoluminescent si nanoparticles by nitrogen co-implantation in a silica matrix. Materials 15(16), 5670 (2022)
CrossRef Google scholar
[16]
Cho, E., Zhou, Y., Cho, J., Cybart, S.: Superconducting nano Josephson junctions patterned with a focused helium ion beam. Appl. Phys. Let. 113(2), 022604 (2018)
CrossRef Google scholar
[17]
Jadwiszczak, J., Keane, D., Maguire, P., Cullen, C., Zhou, Y., Song, H., Downing, C., Fox, D., McEvoy, N., Zhu, R., Xu, J., Duesberg, G., Liao, Z., Boland, J., Zhang, H.: MoS2 memtransistors fabricated by localized helium ion beam irradiation. ACS Nano 13(12), 14262–14273 (2019)
CrossRef Google scholar
[18]
Ziegler, J., Biersack, J., Littmark, U.: The Stopping and Range of Ions in Solids. Pergamon, New York, (1985). See www.srim.org/for SRIM version, 2013.
[19]
Chen, H., Luo, X., Poon, A.: Cavity-enhanced photocurrent generation by 1.55 µm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator. Appl. Phys. Lett. 95(17), 171111 (2009)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(1742 KB)

Accesses

Citations

Detail

Sections
Recommended

/