Enhancement of silicon sub-bandgap photodetection by helium-ion implantation

Zhao Wang, Xiaolei Wen, Kai Zou, Yun Meng, Jinwei Zeng, Jian Wang, Huan Hu, Xiaolong Hu

PDF(1742 KB)
PDF(1742 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (4) : 41. DOI: 10.1007/s12200-023-00096-x
LETTER
LETTER

Enhancement of silicon sub-bandgap photodetection by helium-ion implantation

Author information +
History +

Abstract

Silicon sub-bandgap photodetectors can detect light at the infrared telecommunication wavelengths but with relatively weak photo-response. In this work, we demonstrate the enhancement of sub-bandgap photodetection in silicon by helium-ion implantation, without affecting the transparency that is an important beneficial feature of this type of photodetectors. With an implantation dose of 1 × 1013 ions/cm2, the minimal detectable optical power can be improved from – 33.2 to – 63.1 dBm, or, by 29.9 dB, at the wavelength of 1550 nm, and the photo-response at the same optical power (– 10 dBm) can be enhanced by approximately 18.8 dB. Our work provides a method for strategically modifying the intrinsic trade-off between transparency and strong photo-responses of this type of photodetectors.

Graphical abstract

Keywords

Sub-bandgap optical absorption / Helium-ion implantation / Silicon photodetector / Non-invasive photodetection

Cite this article

Download citation ▾
Zhao Wang, Xiaolei Wen, Kai Zou, Yun Meng, Jinwei Zeng, Jian Wang, Huan Hu, Xiaolong Hu. Enhancement of silicon sub-bandgap photodetection by helium-ion implantation. Front. Optoelectron., 2023, 16(4): 41 https://doi.org/10.1007/s12200-023-00096-x

References

[1]
Morichetti, F., Grillanda, S., Carminati, M., Ferrari, G., Sampietro, M., Strain, M.J., Sorel, M., Melloni, A.: Non-invasive on-chip light observation by contactless waveguide conductivity monitoring. IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014)
CrossRef Google scholar
[2]
Grillanda, S., Carminati, M., Morichetti, F., Ciccarella, P., Annoni, A., Ferrari, G., Strain, M., Sorel, M., Sampietro, M., Melloni, A.: Noninvasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica 1(3), 129–136 (2014)
CrossRef Google scholar
[3]
Grimaldi, V., Zanetto, F., Toso, F., Vita, C., Ferrari, G.: Noninvasive light sensor with enhanced sensitivity for photonic integrated circuits. In 17th conference on Ph.D. research in microelectronics and electronics (PRIME). IEEE, pp. 285–288 (2022)
CrossRef Google scholar
[4]
Wang, Z., Zhang, Z., Zou, K., Meng, Y., Liu, H., Hu, X.: Noise properties of contactless integrated photonic probes on silicon waveguides. Appl. Opt. 62(1), 178–182 (2023)
CrossRef Google scholar
[5]
Wang, Z., Liu, H., Zhang, Z., Zou, K., Hu, X.: Infrared photo-conductor based on surface-state absorption in silicon. Opt. Lett. 46(11), 2577–2580 (2021)
CrossRef Google scholar
[6]
Zhang, Z., Wang, Z., Zou, K., Yang, T., Hu, X.: Temperature-dependent characteristics of infrared photodetectors based on surface-state absorption in silicon. Appl. Opt. 60(30), 9347–9351 (2021)
CrossRef Google scholar
[7]
Wang, Z., Zhang, Z., Zou, K., Meng, Y., Hu, X.: Silicon four-quadrant photodetector working at the 1550-nm telecommunication wavelength. Opt. Lett. 47(16), 4048–4051 (2022)
CrossRef Google scholar
[8]
Allen, F.I.: A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope. Beilstein J. Nanotechnol. 12(1), 633–664 (2021)
CrossRef Google scholar
[9]
Wen, X., Mao, R., Hu, H.: 3-D nanofabrication of silicon and nanostructure fine-tuning via helium ion implantation. Adv. Mater. Interfaces 9(10), 2101643 (2022)
CrossRef Google scholar
[10]
Liu, Y., Chow, C.W., Cheung, W.Y., Tsang, H.K.: In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides. IEEE Photon. Technol. Lett. 18(17), 1882–1884 (2006)
CrossRef Google scholar
[11]
Wang, B., Zhang, Y., Tang, L., Deng, G., Teng, K., Wu, G., Song, L.: Silicon based mesa heterojunction photodetector. Earth and Space: From Infrared to Terahertz (ESIT 2022). SPIE 12505, 71–75 (2023)
CrossRef Google scholar
[12]
Zheng, X., Ma, S., Zhang, Y., Wang, M., Fan, H., Feng, H.: Enhancement of CsPbBr3 perovskite single-crystal photodetector performance via Zr ion implantation. J. Phys. Chem. C 127, 11780–11786 (2023)
CrossRef Google scholar
[13]
Wang, Z., Yuan, L., Wang, Y., Wang, J., Zhang, Y., Jia, R.: Mg ion implantation and post-annealing effect on the photoelectrical performance of a β-Ga2O3 photodetector. Appl. Opt. 62(15), 3848–3854 (2023)
CrossRef Google scholar
[14]
Li, C., Zhao, J., Liu, X., Ren, Z., Yang, Y., Chen, Z., Chen, Q., Sun, H.: Record-breaking-high-responsivity silicon photodetector at infrared 1.31 and 1.55 µm by argon doping technique. IEEE Trans. Electron Devices 70(5), 2364–2369 (2023)
CrossRef Google scholar
[15]
Bornacelli, J., Araiza-Sixtos, F., Torres-Torres, C., Hernández-Acosta, M., Oliver, A., Angel-Rojo, R.: Driving third-order optical nonlinearities in photoluminescent si nanoparticles by nitrogen co-implantation in a silica matrix. Materials 15(16), 5670 (2022)
CrossRef Google scholar
[16]
Cho, E., Zhou, Y., Cho, J., Cybart, S.: Superconducting nano Josephson junctions patterned with a focused helium ion beam. Appl. Phys. Let. 113(2), 022604 (2018)
CrossRef Google scholar
[17]
Jadwiszczak, J., Keane, D., Maguire, P., Cullen, C., Zhou, Y., Song, H., Downing, C., Fox, D., McEvoy, N., Zhu, R., Xu, J., Duesberg, G., Liao, Z., Boland, J., Zhang, H.: MoS2 memtransistors fabricated by localized helium ion beam irradiation. ACS Nano 13(12), 14262–14273 (2019)
CrossRef Google scholar
[18]
Ziegler, J., Biersack, J., Littmark, U.: The Stopping and Range of Ions in Solids. Pergamon, New York, (1985). See www.srim.org/for SRIM version, 2013.
[19]
Chen, H., Luo, X., Poon, A.: Cavity-enhanced photocurrent generation by 1.55 µm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator. Appl. Phys. Lett. 95(17), 171111 (2009)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(1742 KB)

Accesses

Citations

Detail

Sections
Recommended

/