A scheme for realizing nonreciprocal interlayer coupling in bilayer topological systems
Received date: 21 Aug 2023
Accepted date: 29 Oct 2023
Copyright
Nonreciprocal interlayer coupling is difficult to practically implement in bilayer non-Hermitian topological photonic systems. In this work, we identify a similarity transformation between the Hamiltonians of systems with nonreciprocal interlayer coupling and on-site gain/loss. The similarity transformation is widely applicable, and we show its application in one- and two-dimensional bilayer topological systems as examples. The bilayer non-Hermitian system with nonreciprocal interlayer coupling, whose topological number can be defined using the gauge-smoothed Wilson loop, is topologically equivalent to the bilayer system with on-site gain/loss. We also show that the topological number of bilayer non-Hermitian C6v-typed domain-induced topological interface states can be defined in the same way as in the case of the bilayer non-Hermitian Su–Schrieffer–Heeger model. Our results show the relations between two microscopic provenances of the non-Hermiticity and provide a universal and convenient scheme for constructing and studying nonreciprocal interlayer coupling in bilayer non-Hermitian topological systems. This scheme is useful for observation of non-Hermitian skin effect in three-dimensional systems.
Key words: Nonreciprocal; Bilayer; Interlayer coupling; Topological photonics
Xiaoxiao Wang , Ruizhe Gu , Yandong Li , Huixin Qi , Xiaoyong Hu , Xingyuan Wang , Qihuang Gong . A scheme for realizing nonreciprocal interlayer coupling in bilayer topological systems[J]. Frontiers of Optoelectronics, 2023 , 16(4) : 38 . DOI: 10.1007/s12200-023-00094-z
1 |
Zhang, K., Zhang, X., Wang, L., Zhao, D., Wu, F., Yao, Y., Xia, M., Guo, Y.: Observation of topological properties of non-Hermitian crystal systems with diversified coupled resonators chains. J. Appl. Phys. 130, 064502 (2021)
|
2 |
Ao, Y.T., Hu, X.Y., You, Y.L., Lu, C.C., Fu, Y.L., Wang, X.Y., Gong, Q.H.: Topological phase transition in the non-Hermitian coupled resonator array. Phys. Rev. Lett. 125(1), 013902 (2020)
|
3 |
Weidemann, S., Kremer, M., Helbig, T., Hofmann, T., Stegmaier, A., Greiter, M., Thomale, R., Szameit, A.: Topological funneling of light. Science 368(6488), 311–314 (2020)
|
4 |
Lee, C.H., Li, L.H., Gong, J.B.: Hybrid higher-order skin-top-ological modes in nonreciprocal systems. Phys. Rev. Lett. 123, 016805 (2019)
|
5 |
Bergholtz, E.J., Budich, J.C., Kunst, F.K.: Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93(1), 015005 (2021)
|
6 |
Zhou, X.P., Gupta, S.K., Huang, Z., Yan, Z.D., Zhan, P., Chen, Z., Lu, M.H., Wang, Z.L.: Optical lattices with higher-order exceptional points by non-Hermitian coupling. Appl. Phys. Lett. 113, 101108 (2018)
|
7 |
Leykam, D., Flach, S., Chong, Y.D.: Flat bands in lattices with non-Hermitian coupling. Phys. Rev. B 96(6), 064305 (2017)
|
8 |
Jalas, D., Petrov, A., Eich, M., Freude, W., Fan, S.H., Yu, Z.F., Baets, R., Popovic, M., Melloni, A., Joannopoulos, J.D., Vanwolleghem, M., Doerr, C.R., Renner, H.: What is—and what is not—an optical isolator. Nat. Photonics 7(8), 579–582 (2013)
|
9 |
Asadchy, V.S., Mirmoosa, M.S., Diaz-Rubio, A., Fan, S.H., Tretyakov, S.A.: Tutorial on electromagnetic nonreciprocity and its origins. Proc. IEEE 108(10), 1684–1727 (2020)
|
10 |
Wang, Z., Chong, Y.D., Joannopoulos, J.D., Soljacic, M.: Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461(7265), 772–775 (2009)
|
11 |
Bliokh, K.Y., Smirnova, D., Nori, F.: Quantum spin Hall effect of light. Science 348(6242), 1448–1451 (2015)
|
12 |
Zhang, X.J., Zhang, T., Lu, M.H., Chen, Y.F.: A review on non-Hermitian skin effect. Adv. Phys. X 7:1, 2109431, (2022).
|
13 |
Song, Y.L., Liu, W.W., Zheng, L.Z., Zhang, Y.C., Wang, B., Lu, P.X.: Two-dimensional non-Hermitian Skin Effect in a Synthetic Photonic Lattice. Phys. Rev. Appl. 14, 064076 (2020)
|
14 |
Kunst, F.K., Edvardsson, E., Budich, J.C., Bergholtz, E.J.: Biorthogonal bulk-boundary correspondence in non-Hermitian systems. Phys. Rev. Lett. 121(2), 026808 (2018)
|
15 |
Song, F., Yao, S.Y., Wang, Z.: Non-Hermitian topological invariants in real space. Phys. Rev. Lett. 123, 246801 (2019)
|
16 |
Caloz, C., Alu, A., Tretyakov, S., Sounas, D., Achouri, K., Deck-Leger, Z.L.: Electromagnetic nonreciprocity. Phys. Rev. Appl. 10(4), 047001 (2018)
|
17 |
Peng, B., Ozdemir, S.K., Lei, F.C., Monifi, F., Gianfreda, M., Long, G.L., Fan, S.H., Nori, F., Bender, C.M., Yang, L.: Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10(5), 394–398 (2014)
|
18 |
Huang, X.Y., Lu, C.C., Liang, C., Tao, H.G., Liu, Y.C.: Loss-induced nonreciprocity. Light Sci. Appl. 10, 30 (2021)
|
19 |
Shen, C., Zhu, X.H., Li, J.F., Cummer, S.A.: Nonreciprocal acoustic transmission in space-time modulated coupled resonators. Phys. Rev. B 100, 054302 (2019)
|
20 |
Yu, Z.F., Fan, S.H.: Complete optical isolation created by indirect interband photonic transitions. Nat. Photonics 3, 91–94 (2009)
|
21 |
Sounas, D.L., Caloz, C., Alu, A.: Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials. Nat. Commun. 4(1), 2407 (2013)
|
22 |
Yuce, C.: Anomalous features of non-Hermitian topological states. Ann. Phys. 415, 168098 (2020)
|
23 |
Wang, W., Wang, X., Ma, G.: Non-Hermitian morphing of topological modes. Nature 608(7921), 50–55 (2022)
|
24 |
Zhang, X., Tian, Y., Jiang, J.H., Lu, M.H., Chen, Y.F.: Observation of higher-order non-Hermitian skin effect. Nat. Commun. 12(1), 5377 (2021)
|
25 |
Qi, L., Wang, G.L., Liu, S., Zhang, S., Wang, H.F.: Robust interface-state laser in non-Hermitian microresonator arrays. Phys. Rev. Appl. 13(6), 064015 (2020)
|
26 |
Wang, K., Dutt, A., Wojcik, C.C., Fan, S.: Topological complexenergy braiding of non-Hermitian bands. Nature 598(7879), 59–64 (2021)
|
27 |
Gao, Z., Qiao, X., Pan, M., Wu, S., Yim, J., Chen, K., Midya, B., Ge, L., Feng, L.: Two-dimensional reconfigurable non-Hermitian gauged laser array. Phys. Rev. Lett. 130(26), 263801 (2023)
|
28 |
Su, W.P., Schrieffer, J.R., Heeger, A.J.: Solitons in polyacetylene. Phys. Rev. Lett. 42(25), 1698–1701 (1979)
|
29 |
Weimann, S., Kremer, M., Plotnik, Y., Lumer, Y., Nolte, S., Makris, K.G., Segev, M., Rechtsman, M.C., Szameit, A.: Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater. 16(4), 433–438 (2017)
|
30 |
Song, W.G., Sun, W.Z., Chen, C., Song, Q.H., Xiao, S.M., Zhu, S.N., Li, T.: Breakup and recovery of topological zero modes in finite non-Hermitian optical lattices. Phys. Rev. Lett. 123, 165701 (2019)
|
31 |
Wu, H.C., Jin, L., Song, Z.: Topology of an anti-parity-time symmetric non-Hermitian Su-Schrieffer-Heeger model. Phys. Rev. B 103, 235110 (2021)
|
32 |
Liang, S.D., Huang, G.Y.: Topological invariance and global Berry phase in non-Hermitian systems. Phys. Rev. A 87(1), 012118 (2013)
|
33 |
Takata, K., Notomi, M.: Photonic topological insulating phase induced solely by gain and loss. Phys. Rev. Lett. 121(21), 213902 (2018)
|
34 |
Xing, Z., Li, Y., Ao, Y., Hu, X.: Winding number and bulk-boundary correspondence in a one-dimensional non-Hermitian photonic lattice. Phys. Rev. A (Coll. Park) 107(1), 013515 (2023)
|
35 |
Othon, C.M., Laracuente, A., Ladouceur, H.D., Ringeisen, B.R.: Sub-micron parallel laser direct-write. Appl. Surf. Sci. 255(5), 3407–3413 (2008)
|
36 |
Lustig, E., Maczewsky, L.J., Beck, J., Biesenthal, T., Heinrich, M., Yang, Z., Plotnik, Y., Szameit, A., Segev, M.: Photonic topological insulator induced by a dislocation in three dimensions. Nature 609(7929), 931–935 (2022)
|
37 |
Maczewsky, L.J., Heinrich, M., Kremer, M., Ivanov, S.K., Ehrhardt, M., Martinez, F., Kartashov, Y.V., Konotop, V.V., Torner, L., Bauer, D., Szameit, A.: Nonlinearity-induced photonic topological insulator. Science 370(6517), 701–704 (2020)
|
38 |
Yu, F., Zhang, X.L., Tian, Z.N., Chen, Q.D., Sun, H.B.: General rules governing the dynamical encircling of an arbitrary number of exceptional points. Phys. Rev. Lett. 127(25), 253901 (2021)
|
39 |
Wu, L.H., Hu, X.: Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015)
|
40 |
Liu, W.J., Ji, Z.R., Wang, Y.H., Modi, G., Hwang, M., Zheng, B.Y., Sorger, V.J., Pan, A.L., Agarwal, R.: Generation of helical topological exciton-polaritons. Science 370(6516), 600–604 (2020)
|
41 |
Zhao, H., Qiao, X.D., Wu, T.W., Midya, B., Longhi, S., Feng, L.: Non-Hermitian topological light steering. Science 365(6458), 1163–1166 (2019)
|
42 |
Li, Y.D., Fan, C.X., Hu, X.Y., Ao, Y.T., Lu, C.C., Chan, C.T., Kennes, D.M., Gong, Q.H.: Effective hamiltonian for photonic topological insulator with non-Hermitian domain walls. Phys. Rev. Lett. 129, 053903 (2022)
|
43 |
Wang, X.X., Li, Y.D., Hu, X.Y., Gu, R.Z., Ao, Y.T., Jiang, P., Gong, Q.H.: Non-Hermitian high-quality-factor topological photonic crystal cavity. Phys. Rev. A (Coll Park) 105(2), 023531 (2022)
|
44 |
Chen, X.D., He, X.T., Dong, J.W.: All-dielectric layered photonic topological insulators. Laser Photonics Rev. 13, 1900091 (2019)
|
45 |
Yang, Y.T., Xu, Y.F., Xu, T., Wang, H.X., Jiang, J.H., Hu, X., Hang, Z.H.: Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials. Phys. Rev. Lett. 120, 217401 (2018)
|
46 |
Chen, X.D., Deng, W.M., Shi, F.L., Zhao, F.L., Chen, M., Dong, J.W.: Direct observation of corner states in second-order topological photonic crystal slabs. Phys. Rev. Lett. 122(23), 233902 (2019).
|
47 |
Liu, Y., Leung, S., Li, F.F., Lin, Z.K., Tao, X., Poo, Y., Jiang, J.H.: Bulk–disclination correspondence in topological crystalline insulators. Nature 589(7842), 381–385 (2021)
|
48 |
Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of P T-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103(9), 093902 (2009).
|
49 |
Zhu, W., Gong, J.: Photonic corner skin modes in non-Hermitian photonic crystals. Phys. Rev. B 108(3), 035406 (2023)
|
50 |
Bernier, N.R., Tóth, L.D., Koottandavida, A., Ioannou, M.A., Malz, D., Nunnenkamp, A., Feofanov, A.K., Kippenberg, T.J.: Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun. 8(1), 604 (2017)
|
/
〈 | 〉 |