A scheme for realizing nonreciprocal interlayer coupling in bilayer topological systems

Xiaoxiao Wang, Ruizhe Gu, Yandong Li, Huixin Qi, Xiaoyong Hu, Xingyuan Wang, Qihuang Gong

PDF(3678 KB)
PDF(3678 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (4) : 38. DOI: 10.1007/s12200-023-00094-z
RESEARCH ARTICLE
RESEARCH ARTICLE

A scheme for realizing nonreciprocal interlayer coupling in bilayer topological systems

Author information +
History +

Abstract

Nonreciprocal interlayer coupling is difficult to practically implement in bilayer non-Hermitian topological photonic systems. In this work, we identify a similarity transformation between the Hamiltonians of systems with nonreciprocal interlayer coupling and on-site gain/loss. The similarity transformation is widely applicable, and we show its application in one- and two-dimensional bilayer topological systems as examples. The bilayer non-Hermitian system with nonreciprocal interlayer coupling, whose topological number can be defined using the gauge-smoothed Wilson loop, is topologically equivalent to the bilayer system with on-site gain/loss. We also show that the topological number of bilayer non-Hermitian C6v-typed domain-induced topological interface states can be defined in the same way as in the case of the bilayer non-Hermitian Su–Schrieffer–Heeger model. Our results show the relations between two microscopic provenances of the non-Hermiticity and provide a universal and convenient scheme for constructing and studying nonreciprocal interlayer coupling in bilayer non-Hermitian topological systems. This scheme is useful for observation of non-Hermitian skin effect in three-dimensional systems.

Graphical abstract

Keywords

Nonreciprocal / Bilayer / Interlayer coupling / Topological photonics

Cite this article

Download citation ▾
Xiaoxiao Wang, Ruizhe Gu, Yandong Li, Huixin Qi, Xiaoyong Hu, Xingyuan Wang, Qihuang Gong. A scheme for realizing nonreciprocal interlayer coupling in bilayer topological systems. Front. Optoelectron., 2023, 16(4): 38 https://doi.org/10.1007/s12200-023-00094-z

References

[1]
Zhang, K., Zhang, X., Wang, L., Zhao, D., Wu, F., Yao, Y., Xia, M., Guo, Y.: Observation of topological properties of non-Hermitian crystal systems with diversified coupled resonators chains. J. Appl. Phys. 130, 064502 (2021)
CrossRef Google scholar
[2]
Ao, Y.T., Hu, X.Y., You, Y.L., Lu, C.C., Fu, Y.L., Wang, X.Y., Gong, Q.H.: Topological phase transition in the non-Hermitian coupled resonator array. Phys. Rev. Lett. 125(1), 013902 (2020)
CrossRef Google scholar
[3]
Weidemann, S., Kremer, M., Helbig, T., Hofmann, T., Stegmaier, A., Greiter, M., Thomale, R., Szameit, A.: Topological funneling of light. Science 368(6488), 311–314 (2020)
CrossRef Google scholar
[4]
Lee, C.H., Li, L.H., Gong, J.B.: Hybrid higher-order skin-top-ological modes in nonreciprocal systems. Phys. Rev. Lett. 123, 016805 (2019)
CrossRef Google scholar
[5]
Bergholtz, E.J., Budich, J.C., Kunst, F.K.: Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93(1), 015005 (2021)
CrossRef Google scholar
[6]
Zhou, X.P., Gupta, S.K., Huang, Z., Yan, Z.D., Zhan, P., Chen, Z., Lu, M.H., Wang, Z.L.: Optical lattices with higher-order exceptional points by non-Hermitian coupling. Appl. Phys. Lett. 113, 101108 (2018)
CrossRef Google scholar
[7]
Leykam, D., Flach, S., Chong, Y.D.: Flat bands in lattices with non-Hermitian coupling. Phys. Rev. B 96(6), 064305 (2017)
CrossRef Google scholar
[8]
Jalas, D., Petrov, A., Eich, M., Freude, W., Fan, S.H., Yu, Z.F., Baets, R., Popovic, M., Melloni, A., Joannopoulos, J.D., Vanwolleghem, M., Doerr, C.R., Renner, H.: What is—and what is not—an optical isolator. Nat. Photonics 7(8), 579–582 (2013)
CrossRef Google scholar
[9]
Asadchy, V.S., Mirmoosa, M.S., Diaz-Rubio, A., Fan, S.H., Tretyakov, S.A.: Tutorial on electromagnetic nonreciprocity and its origins. Proc. IEEE 108(10), 1684–1727 (2020)
CrossRef Google scholar
[10]
Wang, Z., Chong, Y.D., Joannopoulos, J.D., Soljacic, M.: Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461(7265), 772–775 (2009)
CrossRef Google scholar
[11]
Bliokh, K.Y., Smirnova, D., Nori, F.: Quantum spin Hall effect of light. Science 348(6242), 1448–1451 (2015)
CrossRef Google scholar
[12]
Zhang, X.J., Zhang, T., Lu, M.H., Chen, Y.F.: A review on non-Hermitian skin effect. Adv. Phys. X 7:1, 2109431, (2022).
CrossRef Google scholar
[13]
Song, Y.L., Liu, W.W., Zheng, L.Z., Zhang, Y.C., Wang, B., Lu, P.X.: Two-dimensional non-Hermitian Skin Effect in a Synthetic Photonic Lattice. Phys. Rev. Appl. 14, 064076 (2020)
CrossRef Google scholar
[14]
Kunst, F.K., Edvardsson, E., Budich, J.C., Bergholtz, E.J.: Biorthogonal bulk-boundary correspondence in non-Hermitian systems. Phys. Rev. Lett. 121(2), 026808 (2018)
CrossRef Google scholar
[15]
Song, F., Yao, S.Y., Wang, Z.: Non-Hermitian topological invariants in real space. Phys. Rev. Lett. 123, 246801 (2019)
CrossRef Google scholar
[16]
Caloz, C., Alu, A., Tretyakov, S., Sounas, D., Achouri, K., Deck-Leger, Z.L.: Electromagnetic nonreciprocity. Phys. Rev. Appl. 10(4), 047001 (2018)
CrossRef Google scholar
[17]
Peng, B., Ozdemir, S.K., Lei, F.C., Monifi, F., Gianfreda, M., Long, G.L., Fan, S.H., Nori, F., Bender, C.M., Yang, L.: Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10(5), 394–398 (2014)
CrossRef Google scholar
[18]
Huang, X.Y., Lu, C.C., Liang, C., Tao, H.G., Liu, Y.C.: Loss-induced nonreciprocity. Light Sci. Appl. 10, 30 (2021)
CrossRef Google scholar
[19]
Shen, C., Zhu, X.H., Li, J.F., Cummer, S.A.: Nonreciprocal acoustic transmission in space-time modulated coupled resonators. Phys. Rev. B 100, 054302 (2019)
CrossRef Google scholar
[20]
Yu, Z.F., Fan, S.H.: Complete optical isolation created by indirect interband photonic transitions. Nat. Photonics 3, 91–94 (2009)
CrossRef Google scholar
[21]
Sounas, D.L., Caloz, C., Alu, A.: Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials. Nat. Commun. 4(1), 2407 (2013)
CrossRef Google scholar
[22]
Yuce, C.: Anomalous features of non-Hermitian topological states. Ann. Phys. 415, 168098 (2020)
CrossRef Google scholar
[23]
Wang, W., Wang, X., Ma, G.: Non-Hermitian morphing of topological modes. Nature 608(7921), 50–55 (2022)
CrossRef Google scholar
[24]
Zhang, X., Tian, Y., Jiang, J.H., Lu, M.H., Chen, Y.F.: Observation of higher-order non-Hermitian skin effect. Nat. Commun. 12(1), 5377 (2021)
CrossRef Google scholar
[25]
Qi, L., Wang, G.L., Liu, S., Zhang, S., Wang, H.F.: Robust interface-state laser in non-Hermitian microresonator arrays. Phys. Rev. Appl. 13(6), 064015 (2020)
CrossRef Google scholar
[26]
Wang, K., Dutt, A., Wojcik, C.C., Fan, S.: Topological complexenergy braiding of non-Hermitian bands. Nature 598(7879), 59–64 (2021)
CrossRef Google scholar
[27]
Gao, Z., Qiao, X., Pan, M., Wu, S., Yim, J., Chen, K., Midya, B., Ge, L., Feng, L.: Two-dimensional reconfigurable non-Hermitian gauged laser array. Phys. Rev. Lett. 130(26), 263801 (2023)
CrossRef Google scholar
[28]
Su, W.P., Schrieffer, J.R., Heeger, A.J.: Solitons in polyacetylene. Phys. Rev. Lett. 42(25), 1698–1701 (1979)
CrossRef Google scholar
[29]
Weimann, S., Kremer, M., Plotnik, Y., Lumer, Y., Nolte, S., Makris, K.G., Segev, M., Rechtsman, M.C., Szameit, A.: Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater. 16(4), 433–438 (2017)
CrossRef Google scholar
[30]
Song, W.G., Sun, W.Z., Chen, C., Song, Q.H., Xiao, S.M., Zhu, S.N., Li, T.: Breakup and recovery of topological zero modes in finite non-Hermitian optical lattices. Phys. Rev. Lett. 123, 165701 (2019)
CrossRef Google scholar
[31]
Wu, H.C., Jin, L., Song, Z.: Topology of an anti-parity-time symmetric non-Hermitian Su-Schrieffer-Heeger model. Phys. Rev. B 103, 235110 (2021)
CrossRef Google scholar
[32]
Liang, S.D., Huang, G.Y.: Topological invariance and global Berry phase in non-Hermitian systems. Phys. Rev. A 87(1), 012118 (2013)
CrossRef Google scholar
[33]
Takata, K., Notomi, M.: Photonic topological insulating phase induced solely by gain and loss. Phys. Rev. Lett. 121(21), 213902 (2018)
CrossRef Google scholar
[34]
Xing, Z., Li, Y., Ao, Y., Hu, X.: Winding number and bulk-boundary correspondence in a one-dimensional non-Hermitian photonic lattice. Phys. Rev. A (Coll. Park) 107(1), 013515 (2023)
CrossRef Google scholar
[35]
Othon, C.M., Laracuente, A., Ladouceur, H.D., Ringeisen, B.R.: Sub-micron parallel laser direct-write. Appl. Surf. Sci. 255(5), 3407–3413 (2008)
CrossRef Google scholar
[36]
Lustig, E., Maczewsky, L.J., Beck, J., Biesenthal, T., Heinrich, M., Yang, Z., Plotnik, Y., Szameit, A., Segev, M.: Photonic topological insulator induced by a dislocation in three dimensions. Nature 609(7929), 931–935 (2022)
CrossRef Google scholar
[37]
Maczewsky, L.J., Heinrich, M., Kremer, M., Ivanov, S.K., Ehrhardt, M., Martinez, F., Kartashov, Y.V., Konotop, V.V., Torner, L., Bauer, D., Szameit, A.: Nonlinearity-induced photonic topological insulator. Science 370(6517), 701–704 (2020)
CrossRef Google scholar
[38]
Yu, F., Zhang, X.L., Tian, Z.N., Chen, Q.D., Sun, H.B.: General rules governing the dynamical encircling of an arbitrary number of exceptional points. Phys. Rev. Lett. 127(25), 253901 (2021)
CrossRef Google scholar
[39]
Wu, L.H., Hu, X.: Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015)
CrossRef Google scholar
[40]
Liu, W.J., Ji, Z.R., Wang, Y.H., Modi, G., Hwang, M., Zheng, B.Y., Sorger, V.J., Pan, A.L., Agarwal, R.: Generation of helical topological exciton-polaritons. Science 370(6516), 600–604 (2020)
CrossRef Google scholar
[41]
Zhao, H., Qiao, X.D., Wu, T.W., Midya, B., Longhi, S., Feng, L.: Non-Hermitian topological light steering. Science 365(6458), 1163–1166 (2019)
CrossRef Google scholar
[42]
Li, Y.D., Fan, C.X., Hu, X.Y., Ao, Y.T., Lu, C.C., Chan, C.T., Kennes, D.M., Gong, Q.H.: Effective hamiltonian for photonic topological insulator with non-Hermitian domain walls. Phys. Rev. Lett. 129, 053903 (2022)
CrossRef Google scholar
[43]
Wang, X.X., Li, Y.D., Hu, X.Y., Gu, R.Z., Ao, Y.T., Jiang, P., Gong, Q.H.: Non-Hermitian high-quality-factor topological photonic crystal cavity. Phys. Rev. A (Coll Park) 105(2), 023531 (2022)
CrossRef Google scholar
[44]
Chen, X.D., He, X.T., Dong, J.W.: All-dielectric layered photonic topological insulators. Laser Photonics Rev. 13, 1900091 (2019)
CrossRef Google scholar
[45]
Yang, Y.T., Xu, Y.F., Xu, T., Wang, H.X., Jiang, J.H., Hu, X., Hang, Z.H.: Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials. Phys. Rev. Lett. 120, 217401 (2018)
CrossRef Google scholar
[46]
Chen, X.D., Deng, W.M., Shi, F.L., Zhao, F.L., Chen, M., Dong, J.W.: Direct observation of corner states in second-order topological photonic crystal slabs. Phys. Rev. Lett. 122(23), 233902 (2019).
CrossRef Google scholar
[47]
Liu, Y., Leung, S., Li, F.F., Lin, Z.K., Tao, X., Poo, Y., Jiang, J.H.: Bulk–disclination correspondence in topological crystalline insulators. Nature 589(7842), 381–385 (2021)
CrossRef Google scholar
[48]
Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of P T-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103(9), 093902 (2009).
CrossRef Google scholar
[49]
Zhu, W., Gong, J.: Photonic corner skin modes in non-Hermitian photonic crystals. Phys. Rev. B 108(3), 035406 (2023)
CrossRef Google scholar
[50]
Bernier, N.R., Tóth, L.D., Koottandavida, A., Ioannou, M.A., Malz, D., Nunnenkamp, A., Feofanov, A.K., Kippenberg, T.J.: Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun. 8(1), 604 (2017)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(3678 KB)

Accesses

Citations

Detail

Sections
Recommended

/