LETTER

Potassium ion pre-intercalated MnO2 for aqueous multivalent ion batteries

  • Zikang Xu 1 ,
  • Ruiqi Ren 1 ,
  • Hang Ren 1 ,
  • Jingyuan Zhang 1 ,
  • Jinyao Yang 1 ,
  • Jiawen Qiu 1 ,
  • Yizhou Zhang 1 ,
  • Guoyin Zhu , 1 ,
  • Liang Huang , 2 ,
  • Shengyang Dong , 1
Expand
  • 1. School of Environmental Science and Engineering, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • 2. Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
gyzhu@nuist.edu.cn
huangliang421@hust.edu.cn
dongsyst@nuist.edu.cn

Received date: 17 Aug 2023

Accepted date: 06 Oct 2023

Copyright

2023 The Author(s) 2023

Abstract

Manganese dioxide (MnO2), as a cathode material for multivalent ion (such as Mg2+ and Al3+) storage, is investigated due to its high initial capacity. However, during multivalent ion insertion/extraction, the crystal structure of MnO2 partially collapses, leading to fast capacity decay in few charge/discharge cycles. Here, through pre-intercalating potassium-ion (K+) into δ-MnO2, we synthesize a potassium ion pre-intercalated MnO2, K0.21MnO2·0.31H2O (KMO), as a reliable cathode material for multivalent ion batteries. The as-prepared KMO exhibits a high reversible capacity of 185 mAh/g at 1 A/g, with considerable rate performance and improved cycling stability in 1 mol/L MgSO4 electrolyte. In addition, we observe that aluminum-ion (Al3+) can also insert into a KMO cathode. This work provides a valid method for modification of manganese-based oxides for aqueous multivalent ion batteries.

Cite this article

Zikang Xu , Ruiqi Ren , Hang Ren , Jingyuan Zhang , Jinyao Yang , Jiawen Qiu , Yizhou Zhang , Guoyin Zhu , Liang Huang , Shengyang Dong . Potassium ion pre-intercalated MnO2 for aqueous multivalent ion batteries[J]. Frontiers of Optoelectronics, 2023 , 16(4) : 39 . DOI: 10.1007/s12200-023-00093-0

1
Hu, S., Pillai, A.S., Liang, G., Pang, W.K., Wang, H., Li, Q., Guo, Z.: Li-rich layered oxides and their practical challenges: recent progress and perspectives. Electrochem. Energy Rev. 2(2), 277–311 (2019)

DOI

2
Shao-Horn, Y., Croguennec, L., Delmas, C., Nelson, E.C., O’Keefe, M.A.: Atomic resolution of lithium ions in LiCoO2. Nat. Mater. 2(7), 464–467 (2003)

DOI

3
Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001)

DOI

4
Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104(10), 4271–4302 (2004)

DOI

5
Dong, S., Wu, Y., Lv, N., Ren, R., Huang, L.: Porous sodium titanate nanofibers for high energy quasi-solid-state sodium-ion hybrid capacitors. Rare Met. 41(7), 2453–2459 (2022)

DOI

6
Kim, H., Hong, J., Park, K., Kim, H., Kim, S., Kang, K.: Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014)

DOI

7
Posada, J.O.G., Rennie, A.J.R., Villar, S.P., Martins, V.L., Marinaccio, J., Barnes, A., Glover, C.F., Worsley, D.A., Hall, P.J.: Aqueous batteries as grid scale energy storage solutions. Renewable Sustain. Energy Rev. 68, 1174–1182 (2017)

DOI

8
Zhang, H., Liu, X., Li, H., Hasa, I., Passerini, S.: Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew. Chem. Int. Ed. 60(2), 598–616 (2021)

DOI

9
Tong, Y., Zhang, T., Sun, Y., Wang, X., Wu, X.: Co3O4@NiMoO4 composite electrode materials for flexible hybrid capacitors. Front. Optoelectron. 15(1), 25 (2022)

DOI

10
Chen, S., Zhang, M., Zou, P., Sun, B., Tao, S.: Historical development and novel concepts on electrolytes for aqueous rechargeable batteries. Energy Environ. Sci. 15(5), 1805–1839 (2022)

DOI

11
Dong, S., Shin, W., Jiang, H., Wu, X., Li, Z., Holoubek, J., Stickle, W.F., Key, B., Liu, C., Lu, J., Greaney, P.A., Zhang, X., Ji, X.: Ultra-fast NH4+ storage: strong H Bonding between NH4+ and Bi-layered V2O5. Chem. 5(6), 1537–1551 (2019)

DOI

12
Dong, S., Wang, Y., Chen, C., Shen, L., Zhang, X.: Niobium tungsten oxide in a green water-in-salt electrolyte enables ultrastable aqueous lithium-ion capacitors. Nano-Micro Lett. 12(1), 168 (2020)

DOI

13
Liang, G., Mo, F., Yang, Q., Huang, Z., Li, X., Wang, D., Liu, Z., Li, H., Zhang, Q., Zhi, C.: Commencing an acidic battery based on a copper anode with ultrafast proton-regulated kinetics and superior dendrite-free property. Adv. Mater. 31(52), 1905873 (2019)

DOI

14
Wang, H., Tan, R., Yang, Z., Feng, Y., Duan, X., Ma, J.: Stabilization perspective on metal anodes for aqueous batteries. Adv. Energy Mater. 11(2), 2000962 (2021)

DOI

15
Yang, D., Zhou, Y., Geng, H., Liu, C., Lu, B., Rui, X., Yan, Q.: Pathways towards high energy aqueous rechargeable batteries. Coord. Chem. Rev. 424, 213521 (2020)

DOI

16
Famprikis, T., Canepa, P., Dawson, J.A., Islam, M.S., Masquelier, C.: Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18(12), 1278–1291 (2019)

DOI

17
Chen, D., Tao, D., Ren, X., Wen, F., Li, T., Chen, Z., Cao, Y., Xu, F.: A molybdenum polysulfide in-situ generated from ammonium tetrathiomolybdate for high-capacity and high-power rechargeable magnesium battery cathodes. ACS Nano 16(12), 20510–20520 (2022)

DOI

18
Liu, Y., Qin, Z., Yang, X., Liu, J., Liu, X.-X., Sun, X.: High-volt-age manganese oxide cathode with two-electron transfer enabled by a phosphate proton reservoir for aqueous zinc batteries. ACS Energy Lett. 7(5), 1814–1819 (2022)

DOI

19
Qin, X., Zhao, X., Zhang, G., Wei, Z., Li, L., Wang, X., Zhi, C., Li, H., Han, C., Li, B.: Highly reversible intercalation of calcium ions in layered vanadium compounds enabled by acetonitrile–water hybrid electrolyte. ACS Nano 17(13), 12040–12051 (2023)

DOI

20
Yang, J., Gong, W., Geng, F.: Defect modulation in cobalt manganese oxide sheets for stable and high-energy aqueous aluminumion batteries. Adv. Funct. Mater. 33(27), 2301202 (2023)

DOI

21
Peng, Z., Li, Y., Ruan, P., He, Z., Dai, L., Liu, S., Wang, L., Chan Jun, S., Lu, B., Zhou, J.: Metal-organic frameworks and beyond: the road toward zinc-based batteries. Coord. Chem. Rev. 488, 215190 (2023)

DOI

22
Yi, R., Shi, X., Tang, Y., Yang, Y., Zhou, P., Lu, B., Zhou, J.: Carboxymethyl chitosan-modified zinc anode for high-performance zinc–iodine battery with narrow operating voltage. Small Struct. 4(9), 2300020 (2023)

DOI

23
Xie, X., Li, J., Xing, Z., Lu, B., Liang, S., Zhou, J.: Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl. Sci. Rev. 10(3), nwac281 (2023)

DOI

24
You, C., Wu, X., Yuan, X., Chen, Y., Liu, L., Zhu, Y., Fu, L., Wu, Y., Guo, Y.-G., van Ree, T.: Advances in rechargeable Mg batteries. J. Mater. Chem. A. 8(48), 25601–25625 (2020)

DOI

25
Zhang, J., Chang, Z., Zhang, Z., Du, A., Dong, S., Li, Z., Li, G., Cui, G.: Current design strategies for rechargeable magnesium-based batteries. ACS Nano 15(10), 15594–15624 (2021)

DOI

26
Pei, C., Xiong, F., Yin, Y., Liu, Z., Tang, H., Sun, R., An, Q., Mai, L.: Recent progress and challenges in the optimization of electrode materials for rechargeable magnesium batteries. Small 17(3), 2004108 (2021)

DOI

27
Song, J., Noked, M., Gillette, E., Duay, J., Rubloff, G., Lee, S.B.: Activation of a MnO2 cathode by water-stimulated Mg2+ insertion for a magnesium ion battery. Phys. Chem. Chem. Phys. 17(7), 5256–5264 (2015)

DOI

28
Nam, K.W., Kim, S., Lee, S., Salama, M., Shterenberg, I., Gofer, Y., Kim, J.S., Yang, E., Park, C.S., Kim, J.S., Lee, S.S., Chang, W.S., Doo, S.G., Jo, Y.N., Jung, Y., Aurbach, D., Choi, J.W.: The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 15(6), 4071–4079 (2015)

DOI

29
Saha, P., Jampani, P.H., Datta, M.K., Hong, D., Gattu, B., Patel, P., Kadakia, K.S., Manivannan, A., Kumta, P.N.: A rapid solid-state synthesis of electrochemically active Chevrel phases (Mo6T8; T = S, Se) for rechargeable magnesium batteries. Nano Res. 10(12), 4415–4435 (2017)

DOI

30
Canepa, P., Sai Gautam, G., Hannah, D.C., Malik, R., Liu, M., Gallagher, K.G., Persson, K.A., Ceder, G.: Odyssey of multivalent cathode materials: open questions and future challenges. Chem. Rev. 117(5), 4287–4341 (2017)

DOI

31
Andrews, J.L., Mukherjee, A., Yoo, H.D., Parija, A., Marley, P.M., Fakra, S., Prendergast, D., Cabana, J., Klie, R.F., Banerjee, S.: Reversible Mg-ion insertion in a metastable one-dimensional polymorph of V2O5. Chem. 4(3), 564–585 (2018)

DOI

32
Augustyn, V., Simon, P., Dunn, B.: Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597–1614 (2014)

DOI

33
Zhang, R., Yu, X., Nam, K.-W., Ling, C., Arthur, T.S., Song, W., Knapp, A.M., Ehrlich, S.N., Yang, X.-Q., Matsui, M.: α-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 23, 110–113 (2012)

DOI

34
Kim, J.-S., Chang, W., Kim, R., Kim, D., Han, D., Lee, K., Lee, S., Doo, S.: High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries. J. Power. Sources 273, 210–215 (2015)

DOI

35
Chen, W., Zhan, X., Luo, B., Ou, Z., Shih, P., Yao, L., Pidaparthy, S., Patra, A., An, H., Braun, P.V., Stephens, R.M., Yang, H., Zuo, J., Chen, Q.: Effects of particle size on Mg2+ ion intercalation into λ-MnO2 cathode materials. Nano Lett. 19(7), 4712–4720 (2019)

DOI

36
Zhang, C., Zhan, X., Al-Zoubi, T., Ma, Y., Shih, P., Wang, F., Chen, W., Pidaparthy, S., Stephens, R.M., Chen, Q., Zuo, J., Yang, H.: Electrochemical generation of birnessite MnO2 nanoflowers for intercalation of Mg2+ ions. Nano Energy 102, 107696 (2022)

DOI

37
Clites, M., Pomerantseva, E.: Bilayered vanadium oxides by chemical pre-intercalation of alkali and alkali-earth ions as battery electrodes. Energy Storage Mater. 11, 30–37 (2018)

DOI

38
Tang, H., Xiong, F., Jiang, Y., Pei, C., Tan, S., Yang, W., Li, M., An, Q., Mai, L.: Alkali ions pre-intercalated layered vanadium oxide nanowires for stable magnesium ions storage. Nano Energy 58, 347–354 (2019)

DOI

39
Rasul, S., Suzuki, S., Yamaguchi, S., Miyayama, M.: High capacity positive electrodes for secondary Mg-ion batteries. Electrochim. Acta 82, 243–249 (2012)

DOI

40
Augustyn, V., Come, J., Lowe, M.A., Kim, J.W., Taberna, P., Tolbert, S.H., Abruña, H.D., Simon, P., Dunn, B.: High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518–522 (2013)

DOI

41
Choi, C., Ashby, D.S., Butts, D.M., DeBlock, R.H., Wei, Q., Lau, J., Dunn, B.: Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5(1), 5–19 (2020)

DOI

42
Koketsu, T., Ma, J., Morgan, B.J., Body, M., Legein, C., Dachraoui, W., Giannini, M., Demortière, A., Salanne, M., Dardoize, F., Groult, H., Borkiewicz, O.J., Chapman, K.W., Strasser, P., Dambournet, D.: Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat. Mater. 16(11), 1142–1148 (2017)

DOI

43
Wu, D., Zhuang, Y., Wang, F., Yang, Y., Zeng, J., Zhao, J.: High-rate performance magnesium batteries achieved by direct growth of honeycomb-like V2O5 electrodes with rich oxygen vacancies. Nano Res. 16(4), 4880–4887 (2023)

DOI

44
Yuan, C., Zhang, Y., Pan, Y., Liu, X., Wang, G., Cao, D.: Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery. Electrochim. Acta 116, 404–412 (2014)

DOI

45
Liu, M., Rong, Z., Malik, R., Canepa, P., Jain, A., Ceder, G., Persson, K.A.: Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations. Energy Environ. Sci. 8(3), 964–974 (2015)

DOI

46
Wu, C., Gu, S., Zhang, Q., Bai, Y., Li, M., Yuan, Y., Wang, H., Liu, X., Yuan, Y., Zhu, N., Wu, F., Li, H., Gu, L., Lu, J.: Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat. Commun. 10(1), 73 (2019)

DOI

47
Gu, S., Wang, H., Wu, C., Bai, Y., Li, H., Wu, F.: Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Mater. 6, 9–17 (2017)

DOI

48
Yang, H., Li, H., Li, J., Sun, Z., He, K., Cheng, H.-M., Li, F.: The rechargeable aluminum battery: opportunities and challenges. Angew. Chem. Int. Ed. 58(35), 11978–11996 (2019)

DOI

Outlines

/