Potassium ion pre-intercalated MnO2 for aqueous multivalent ion batteries
Zikang Xu, Ruiqi Ren, Hang Ren, Jingyuan Zhang, Jinyao Yang, Jiawen Qiu, Yizhou Zhang, Guoyin Zhu, Liang Huang, Shengyang Dong
Potassium ion pre-intercalated MnO2 for aqueous multivalent ion batteries
Manganese dioxide (MnO2), as a cathode material for multivalent ion (such as Mg2+ and Al3+) storage, is investigated due to its high initial capacity. However, during multivalent ion insertion/extraction, the crystal structure of MnO2 partially collapses, leading to fast capacity decay in few charge/discharge cycles. Here, through pre-intercalating potassium-ion (K+) into δ-MnO2, we synthesize a potassium ion pre-intercalated MnO2, K0.21MnO2·0.31H2O (KMO), as a reliable cathode material for multivalent ion batteries. The as-prepared KMO exhibits a high reversible capacity of 185 mAh/g at 1 A/g, with considerable rate performance and improved cycling stability in 1 mol/L MgSO4 electrolyte. In addition, we observe that aluminum-ion (Al3+) can also insert into a KMO cathode. This work provides a valid method for modification of manganese-based oxides for aqueous multivalent ion batteries.
Aqueous batteries / Multivalent ion batteries / Magnesium ion / Aluminum ion / MnO2
[1] |
Hu, S., Pillai, A.S., Liang, G., Pang, W.K., Wang, H., Li, Q., Guo, Z.: Li-rich layered oxides and their practical challenges: recent progress and perspectives. Electrochem. Energy Rev. 2(2), 277–311 (2019)
CrossRef
Google scholar
|
[2] |
Shao-Horn, Y., Croguennec, L., Delmas, C., Nelson, E.C., O’Keefe, M.A.: Atomic resolution of lithium ions in LiCoO2. Nat. Mater. 2(7), 464–467 (2003)
CrossRef
Google scholar
|
[3] |
Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001)
CrossRef
Google scholar
|
[4] |
Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104(10), 4271–4302 (2004)
CrossRef
Google scholar
|
[5] |
Dong, S., Wu, Y., Lv, N., Ren, R., Huang, L.: Porous sodium titanate nanofibers for high energy quasi-solid-state sodium-ion hybrid capacitors. Rare Met. 41(7), 2453–2459 (2022)
CrossRef
Google scholar
|
[6] |
Kim, H., Hong, J., Park, K., Kim, H., Kim, S., Kang, K.: Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014)
CrossRef
Google scholar
|
[7] |
Posada, J.O.G., Rennie, A.J.R., Villar, S.P., Martins, V.L., Marinaccio, J., Barnes, A., Glover, C.F., Worsley, D.A., Hall, P.J.: Aqueous batteries as grid scale energy storage solutions. Renewable Sustain. Energy Rev. 68, 1174–1182 (2017)
CrossRef
Google scholar
|
[8] |
Zhang, H., Liu, X., Li, H., Hasa, I., Passerini, S.: Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew. Chem. Int. Ed. 60(2), 598–616 (2021)
CrossRef
Google scholar
|
[9] |
Tong, Y., Zhang, T., Sun, Y., Wang, X., Wu, X.: Co3O4@NiMoO4 composite electrode materials for flexible hybrid capacitors. Front. Optoelectron. 15(1), 25 (2022)
CrossRef
Google scholar
|
[10] |
Chen, S., Zhang, M., Zou, P., Sun, B., Tao, S.: Historical development and novel concepts on electrolytes for aqueous rechargeable batteries. Energy Environ. Sci. 15(5), 1805–1839 (2022)
CrossRef
Google scholar
|
[11] |
Dong, S., Shin, W., Jiang, H., Wu, X., Li, Z., Holoubek, J., Stickle, W.F., Key, B., Liu, C., Lu, J., Greaney, P.A., Zhang, X., Ji, X.: Ultra-fast NH4+ storage: strong H Bonding between NH4+ and Bi-layered V2O5. Chem. 5(6), 1537–1551 (2019)
CrossRef
Google scholar
|
[12] |
Dong, S., Wang, Y., Chen, C., Shen, L., Zhang, X.: Niobium tungsten oxide in a green water-in-salt electrolyte enables ultrastable aqueous lithium-ion capacitors. Nano-Micro Lett. 12(1), 168 (2020)
CrossRef
Google scholar
|
[13] |
Liang, G., Mo, F., Yang, Q., Huang, Z., Li, X., Wang, D., Liu, Z., Li, H., Zhang, Q., Zhi, C.: Commencing an acidic battery based on a copper anode with ultrafast proton-regulated kinetics and superior dendrite-free property. Adv. Mater. 31(52), 1905873 (2019)
CrossRef
Google scholar
|
[14] |
Wang, H., Tan, R., Yang, Z., Feng, Y., Duan, X., Ma, J.: Stabilization perspective on metal anodes for aqueous batteries. Adv. Energy Mater. 11(2), 2000962 (2021)
CrossRef
Google scholar
|
[15] |
Yang, D., Zhou, Y., Geng, H., Liu, C., Lu, B., Rui, X., Yan, Q.: Pathways towards high energy aqueous rechargeable batteries. Coord. Chem. Rev. 424, 213521 (2020)
CrossRef
Google scholar
|
[16] |
Famprikis, T., Canepa, P., Dawson, J.A., Islam, M.S., Masquelier, C.: Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18(12), 1278–1291 (2019)
CrossRef
Google scholar
|
[17] |
Chen, D., Tao, D., Ren, X., Wen, F., Li, T., Chen, Z., Cao, Y., Xu, F.: A molybdenum polysulfide in-situ generated from ammonium tetrathiomolybdate for high-capacity and high-power rechargeable magnesium battery cathodes. ACS Nano 16(12), 20510–20520 (2022)
CrossRef
Google scholar
|
[18] |
Liu, Y., Qin, Z., Yang, X., Liu, J., Liu, X.-X., Sun, X.: High-volt-age manganese oxide cathode with two-electron transfer enabled by a phosphate proton reservoir for aqueous zinc batteries. ACS Energy Lett. 7(5), 1814–1819 (2022)
CrossRef
Google scholar
|
[19] |
Qin, X., Zhao, X., Zhang, G., Wei, Z., Li, L., Wang, X., Zhi, C., Li, H., Han, C., Li, B.: Highly reversible intercalation of calcium ions in layered vanadium compounds enabled by acetonitrile–water hybrid electrolyte. ACS Nano 17(13), 12040–12051 (2023)
CrossRef
Google scholar
|
[20] |
Yang, J., Gong, W., Geng, F.: Defect modulation in cobalt manganese oxide sheets for stable and high-energy aqueous aluminumion batteries. Adv. Funct. Mater. 33(27), 2301202 (2023)
CrossRef
Google scholar
|
[21] |
Peng, Z., Li, Y., Ruan, P., He, Z., Dai, L., Liu, S., Wang, L., Chan Jun, S., Lu, B., Zhou, J.: Metal-organic frameworks and beyond: the road toward zinc-based batteries. Coord. Chem. Rev. 488, 215190 (2023)
CrossRef
Google scholar
|
[22] |
Yi, R., Shi, X., Tang, Y., Yang, Y., Zhou, P., Lu, B., Zhou, J.: Carboxymethyl chitosan-modified zinc anode for high-performance zinc–iodine battery with narrow operating voltage. Small Struct. 4(9), 2300020 (2023)
CrossRef
Google scholar
|
[23] |
Xie, X., Li, J., Xing, Z., Lu, B., Liang, S., Zhou, J.: Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl. Sci. Rev. 10(3), nwac281 (2023)
CrossRef
Google scholar
|
[24] |
You, C., Wu, X., Yuan, X., Chen, Y., Liu, L., Zhu, Y., Fu, L., Wu, Y., Guo, Y.-G., van Ree, T.: Advances in rechargeable Mg batteries. J. Mater. Chem. A. 8(48), 25601–25625 (2020)
CrossRef
Google scholar
|
[25] |
Zhang, J., Chang, Z., Zhang, Z., Du, A., Dong, S., Li, Z., Li, G., Cui, G.: Current design strategies for rechargeable magnesium-based batteries. ACS Nano 15(10), 15594–15624 (2021)
CrossRef
Google scholar
|
[26] |
Pei, C., Xiong, F., Yin, Y., Liu, Z., Tang, H., Sun, R., An, Q., Mai, L.: Recent progress and challenges in the optimization of electrode materials for rechargeable magnesium batteries. Small 17(3), 2004108 (2021)
CrossRef
Google scholar
|
[27] |
Song, J., Noked, M., Gillette, E., Duay, J., Rubloff, G., Lee, S.B.: Activation of a MnO2 cathode by water-stimulated Mg2+ insertion for a magnesium ion battery. Phys. Chem. Chem. Phys. 17(7), 5256–5264 (2015)
CrossRef
Google scholar
|
[28] |
Nam, K.W., Kim, S., Lee, S., Salama, M., Shterenberg, I., Gofer, Y., Kim, J.S., Yang, E., Park, C.S., Kim, J.S., Lee, S.S., Chang, W.S., Doo, S.G., Jo, Y.N., Jung, Y., Aurbach, D., Choi, J.W.: The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 15(6), 4071–4079 (2015)
CrossRef
Google scholar
|
[29] |
Saha, P., Jampani, P.H., Datta, M.K., Hong, D., Gattu, B., Patel, P., Kadakia, K.S., Manivannan, A., Kumta, P.N.: A rapid solid-state synthesis of electrochemically active Chevrel phases (Mo6T8; T = S, Se) for rechargeable magnesium batteries. Nano Res. 10(12), 4415–4435 (2017)
CrossRef
Google scholar
|
[30] |
Canepa, P., Sai Gautam, G., Hannah, D.C., Malik, R., Liu, M., Gallagher, K.G., Persson, K.A., Ceder, G.: Odyssey of multivalent cathode materials: open questions and future challenges. Chem. Rev. 117(5), 4287–4341 (2017)
CrossRef
Google scholar
|
[31] |
Andrews, J.L., Mukherjee, A., Yoo, H.D., Parija, A., Marley, P.M., Fakra, S., Prendergast, D., Cabana, J., Klie, R.F., Banerjee, S.: Reversible Mg-ion insertion in a metastable one-dimensional polymorph of V2O5. Chem. 4(3), 564–585 (2018)
CrossRef
Google scholar
|
[32] |
Augustyn, V., Simon, P., Dunn, B.: Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597–1614 (2014)
CrossRef
Google scholar
|
[33] |
Zhang, R., Yu, X., Nam, K.-W., Ling, C., Arthur, T.S., Song, W., Knapp, A.M., Ehrlich, S.N., Yang, X.-Q., Matsui, M.: α-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 23, 110–113 (2012)
CrossRef
Google scholar
|
[34] |
Kim, J.-S., Chang, W., Kim, R., Kim, D., Han, D., Lee, K., Lee, S., Doo, S.: High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries. J. Power. Sources 273, 210–215 (2015)
CrossRef
Google scholar
|
[35] |
Chen, W., Zhan, X., Luo, B., Ou, Z., Shih, P., Yao, L., Pidaparthy, S., Patra, A., An, H., Braun, P.V., Stephens, R.M., Yang, H., Zuo, J., Chen, Q.: Effects of particle size on Mg2+ ion intercalation into λ-MnO2 cathode materials. Nano Lett. 19(7), 4712–4720 (2019)
CrossRef
Google scholar
|
[36] |
Zhang, C., Zhan, X., Al-Zoubi, T., Ma, Y., Shih, P., Wang, F., Chen, W., Pidaparthy, S., Stephens, R.M., Chen, Q., Zuo, J., Yang, H.: Electrochemical generation of birnessite MnO2 nanoflowers for intercalation of Mg2+ ions. Nano Energy 102, 107696 (2022)
CrossRef
Google scholar
|
[37] |
Clites, M., Pomerantseva, E.: Bilayered vanadium oxides by chemical pre-intercalation of alkali and alkali-earth ions as battery electrodes. Energy Storage Mater. 11, 30–37 (2018)
CrossRef
Google scholar
|
[38] |
Tang, H., Xiong, F., Jiang, Y., Pei, C., Tan, S., Yang, W., Li, M., An, Q., Mai, L.: Alkali ions pre-intercalated layered vanadium oxide nanowires for stable magnesium ions storage. Nano Energy 58, 347–354 (2019)
CrossRef
Google scholar
|
[39] |
Rasul, S., Suzuki, S., Yamaguchi, S., Miyayama, M.: High capacity positive electrodes for secondary Mg-ion batteries. Electrochim. Acta 82, 243–249 (2012)
CrossRef
Google scholar
|
[40] |
Augustyn, V., Come, J., Lowe, M.A., Kim, J.W., Taberna, P., Tolbert, S.H., Abruña, H.D., Simon, P., Dunn, B.: High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518–522 (2013)
CrossRef
Google scholar
|
[41] |
Choi, C., Ashby, D.S., Butts, D.M., DeBlock, R.H., Wei, Q., Lau, J., Dunn, B.: Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5(1), 5–19 (2020)
CrossRef
Google scholar
|
[42] |
Koketsu, T., Ma, J., Morgan, B.J., Body, M., Legein, C., Dachraoui, W., Giannini, M., Demortière, A., Salanne, M., Dardoize, F., Groult, H., Borkiewicz, O.J., Chapman, K.W., Strasser, P., Dambournet, D.: Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat. Mater. 16(11), 1142–1148 (2017)
CrossRef
Google scholar
|
[43] |
Wu, D., Zhuang, Y., Wang, F., Yang, Y., Zeng, J., Zhao, J.: High-rate performance magnesium batteries achieved by direct growth of honeycomb-like V2O5 electrodes with rich oxygen vacancies. Nano Res. 16(4), 4880–4887 (2023)
CrossRef
Google scholar
|
[44] |
Yuan, C., Zhang, Y., Pan, Y., Liu, X., Wang, G., Cao, D.: Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery. Electrochim. Acta 116, 404–412 (2014)
CrossRef
Google scholar
|
[45] |
Liu, M., Rong, Z., Malik, R., Canepa, P., Jain, A., Ceder, G., Persson, K.A.: Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations. Energy Environ. Sci. 8(3), 964–974 (2015)
CrossRef
Google scholar
|
[46] |
Wu, C., Gu, S., Zhang, Q., Bai, Y., Li, M., Yuan, Y., Wang, H., Liu, X., Yuan, Y., Zhu, N., Wu, F., Li, H., Gu, L., Lu, J.: Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat. Commun. 10(1), 73 (2019)
CrossRef
Google scholar
|
[47] |
Gu, S., Wang, H., Wu, C., Bai, Y., Li, H., Wu, F.: Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Mater. 6, 9–17 (2017)
CrossRef
Google scholar
|
[48] |
Yang, H., Li, H., Li, J., Sun, Z., He, K., Cheng, H.-M., Li, F.: The rechargeable aluminum battery: opportunities and challenges. Angew. Chem. Int. Ed. 58(35), 11978–11996 (2019)
CrossRef
Google scholar
|
/
〈 | 〉 |