Potassium ion pre-intercalated MnO2 for aqueous multivalent ion batteries

Zikang Xu, Ruiqi Ren, Hang Ren, Jingyuan Zhang, Jinyao Yang, Jiawen Qiu, Yizhou Zhang, Guoyin Zhu, Liang Huang, Shengyang Dong

PDF(1323 KB)
PDF(1323 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (4) : 39. DOI: 10.1007/s12200-023-00093-0
LETTER
LETTER

Potassium ion pre-intercalated MnO2 for aqueous multivalent ion batteries

Author information +
History +

Abstract

Manganese dioxide (MnO2), as a cathode material for multivalent ion (such as Mg2+ and Al3+) storage, is investigated due to its high initial capacity. However, during multivalent ion insertion/extraction, the crystal structure of MnO2 partially collapses, leading to fast capacity decay in few charge/discharge cycles. Here, through pre-intercalating potassium-ion (K+) into δ-MnO2, we synthesize a potassium ion pre-intercalated MnO2, K0.21MnO2·0.31H2O (KMO), as a reliable cathode material for multivalent ion batteries. The as-prepared KMO exhibits a high reversible capacity of 185 mAh/g at 1 A/g, with considerable rate performance and improved cycling stability in 1 mol/L MgSO4 electrolyte. In addition, we observe that aluminum-ion (Al3+) can also insert into a KMO cathode. This work provides a valid method for modification of manganese-based oxides for aqueous multivalent ion batteries.

Graphical abstract

Keywords

Aqueous batteries / Multivalent ion batteries / Magnesium ion / Aluminum ion / MnO2

Cite this article

Download citation ▾
Zikang Xu, Ruiqi Ren, Hang Ren, Jingyuan Zhang, Jinyao Yang, Jiawen Qiu, Yizhou Zhang, Guoyin Zhu, Liang Huang, Shengyang Dong. Potassium ion pre-intercalated MnO2 for aqueous multivalent ion batteries. Front. Optoelectron., 2023, 16(4): 39 https://doi.org/10.1007/s12200-023-00093-0

References

[1]
Hu, S., Pillai, A.S., Liang, G., Pang, W.K., Wang, H., Li, Q., Guo, Z.: Li-rich layered oxides and their practical challenges: recent progress and perspectives. Electrochem. Energy Rev. 2(2), 277–311 (2019)
CrossRef Google scholar
[2]
Shao-Horn, Y., Croguennec, L., Delmas, C., Nelson, E.C., O’Keefe, M.A.: Atomic resolution of lithium ions in LiCoO2. Nat. Mater. 2(7), 464–467 (2003)
CrossRef Google scholar
[3]
Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001)
CrossRef Google scholar
[4]
Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104(10), 4271–4302 (2004)
CrossRef Google scholar
[5]
Dong, S., Wu, Y., Lv, N., Ren, R., Huang, L.: Porous sodium titanate nanofibers for high energy quasi-solid-state sodium-ion hybrid capacitors. Rare Met. 41(7), 2453–2459 (2022)
CrossRef Google scholar
[6]
Kim, H., Hong, J., Park, K., Kim, H., Kim, S., Kang, K.: Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014)
CrossRef Google scholar
[7]
Posada, J.O.G., Rennie, A.J.R., Villar, S.P., Martins, V.L., Marinaccio, J., Barnes, A., Glover, C.F., Worsley, D.A., Hall, P.J.: Aqueous batteries as grid scale energy storage solutions. Renewable Sustain. Energy Rev. 68, 1174–1182 (2017)
CrossRef Google scholar
[8]
Zhang, H., Liu, X., Li, H., Hasa, I., Passerini, S.: Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew. Chem. Int. Ed. 60(2), 598–616 (2021)
CrossRef Google scholar
[9]
Tong, Y., Zhang, T., Sun, Y., Wang, X., Wu, X.: Co3O4@NiMoO4 composite electrode materials for flexible hybrid capacitors. Front. Optoelectron. 15(1), 25 (2022)
CrossRef Google scholar
[10]
Chen, S., Zhang, M., Zou, P., Sun, B., Tao, S.: Historical development and novel concepts on electrolytes for aqueous rechargeable batteries. Energy Environ. Sci. 15(5), 1805–1839 (2022)
CrossRef Google scholar
[11]
Dong, S., Shin, W., Jiang, H., Wu, X., Li, Z., Holoubek, J., Stickle, W.F., Key, B., Liu, C., Lu, J., Greaney, P.A., Zhang, X., Ji, X.: Ultra-fast NH4+ storage: strong H Bonding between NH4+ and Bi-layered V2O5. Chem. 5(6), 1537–1551 (2019)
CrossRef Google scholar
[12]
Dong, S., Wang, Y., Chen, C., Shen, L., Zhang, X.: Niobium tungsten oxide in a green water-in-salt electrolyte enables ultrastable aqueous lithium-ion capacitors. Nano-Micro Lett. 12(1), 168 (2020)
CrossRef Google scholar
[13]
Liang, G., Mo, F., Yang, Q., Huang, Z., Li, X., Wang, D., Liu, Z., Li, H., Zhang, Q., Zhi, C.: Commencing an acidic battery based on a copper anode with ultrafast proton-regulated kinetics and superior dendrite-free property. Adv. Mater. 31(52), 1905873 (2019)
CrossRef Google scholar
[14]
Wang, H., Tan, R., Yang, Z., Feng, Y., Duan, X., Ma, J.: Stabilization perspective on metal anodes for aqueous batteries. Adv. Energy Mater. 11(2), 2000962 (2021)
CrossRef Google scholar
[15]
Yang, D., Zhou, Y., Geng, H., Liu, C., Lu, B., Rui, X., Yan, Q.: Pathways towards high energy aqueous rechargeable batteries. Coord. Chem. Rev. 424, 213521 (2020)
CrossRef Google scholar
[16]
Famprikis, T., Canepa, P., Dawson, J.A., Islam, M.S., Masquelier, C.: Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18(12), 1278–1291 (2019)
CrossRef Google scholar
[17]
Chen, D., Tao, D., Ren, X., Wen, F., Li, T., Chen, Z., Cao, Y., Xu, F.: A molybdenum polysulfide in-situ generated from ammonium tetrathiomolybdate for high-capacity and high-power rechargeable magnesium battery cathodes. ACS Nano 16(12), 20510–20520 (2022)
CrossRef Google scholar
[18]
Liu, Y., Qin, Z., Yang, X., Liu, J., Liu, X.-X., Sun, X.: High-volt-age manganese oxide cathode with two-electron transfer enabled by a phosphate proton reservoir for aqueous zinc batteries. ACS Energy Lett. 7(5), 1814–1819 (2022)
CrossRef Google scholar
[19]
Qin, X., Zhao, X., Zhang, G., Wei, Z., Li, L., Wang, X., Zhi, C., Li, H., Han, C., Li, B.: Highly reversible intercalation of calcium ions in layered vanadium compounds enabled by acetonitrile–water hybrid electrolyte. ACS Nano 17(13), 12040–12051 (2023)
CrossRef Google scholar
[20]
Yang, J., Gong, W., Geng, F.: Defect modulation in cobalt manganese oxide sheets for stable and high-energy aqueous aluminumion batteries. Adv. Funct. Mater. 33(27), 2301202 (2023)
CrossRef Google scholar
[21]
Peng, Z., Li, Y., Ruan, P., He, Z., Dai, L., Liu, S., Wang, L., Chan Jun, S., Lu, B., Zhou, J.: Metal-organic frameworks and beyond: the road toward zinc-based batteries. Coord. Chem. Rev. 488, 215190 (2023)
CrossRef Google scholar
[22]
Yi, R., Shi, X., Tang, Y., Yang, Y., Zhou, P., Lu, B., Zhou, J.: Carboxymethyl chitosan-modified zinc anode for high-performance zinc–iodine battery with narrow operating voltage. Small Struct. 4(9), 2300020 (2023)
CrossRef Google scholar
[23]
Xie, X., Li, J., Xing, Z., Lu, B., Liang, S., Zhou, J.: Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl. Sci. Rev. 10(3), nwac281 (2023)
CrossRef Google scholar
[24]
You, C., Wu, X., Yuan, X., Chen, Y., Liu, L., Zhu, Y., Fu, L., Wu, Y., Guo, Y.-G., van Ree, T.: Advances in rechargeable Mg batteries. J. Mater. Chem. A. 8(48), 25601–25625 (2020)
CrossRef Google scholar
[25]
Zhang, J., Chang, Z., Zhang, Z., Du, A., Dong, S., Li, Z., Li, G., Cui, G.: Current design strategies for rechargeable magnesium-based batteries. ACS Nano 15(10), 15594–15624 (2021)
CrossRef Google scholar
[26]
Pei, C., Xiong, F., Yin, Y., Liu, Z., Tang, H., Sun, R., An, Q., Mai, L.: Recent progress and challenges in the optimization of electrode materials for rechargeable magnesium batteries. Small 17(3), 2004108 (2021)
CrossRef Google scholar
[27]
Song, J., Noked, M., Gillette, E., Duay, J., Rubloff, G., Lee, S.B.: Activation of a MnO2 cathode by water-stimulated Mg2+ insertion for a magnesium ion battery. Phys. Chem. Chem. Phys. 17(7), 5256–5264 (2015)
CrossRef Google scholar
[28]
Nam, K.W., Kim, S., Lee, S., Salama, M., Shterenberg, I., Gofer, Y., Kim, J.S., Yang, E., Park, C.S., Kim, J.S., Lee, S.S., Chang, W.S., Doo, S.G., Jo, Y.N., Jung, Y., Aurbach, D., Choi, J.W.: The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 15(6), 4071–4079 (2015)
CrossRef Google scholar
[29]
Saha, P., Jampani, P.H., Datta, M.K., Hong, D., Gattu, B., Patel, P., Kadakia, K.S., Manivannan, A., Kumta, P.N.: A rapid solid-state synthesis of electrochemically active Chevrel phases (Mo6T8; T = S, Se) for rechargeable magnesium batteries. Nano Res. 10(12), 4415–4435 (2017)
CrossRef Google scholar
[30]
Canepa, P., Sai Gautam, G., Hannah, D.C., Malik, R., Liu, M., Gallagher, K.G., Persson, K.A., Ceder, G.: Odyssey of multivalent cathode materials: open questions and future challenges. Chem. Rev. 117(5), 4287–4341 (2017)
CrossRef Google scholar
[31]
Andrews, J.L., Mukherjee, A., Yoo, H.D., Parija, A., Marley, P.M., Fakra, S., Prendergast, D., Cabana, J., Klie, R.F., Banerjee, S.: Reversible Mg-ion insertion in a metastable one-dimensional polymorph of V2O5. Chem. 4(3), 564–585 (2018)
CrossRef Google scholar
[32]
Augustyn, V., Simon, P., Dunn, B.: Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597–1614 (2014)
CrossRef Google scholar
[33]
Zhang, R., Yu, X., Nam, K.-W., Ling, C., Arthur, T.S., Song, W., Knapp, A.M., Ehrlich, S.N., Yang, X.-Q., Matsui, M.: α-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 23, 110–113 (2012)
CrossRef Google scholar
[34]
Kim, J.-S., Chang, W., Kim, R., Kim, D., Han, D., Lee, K., Lee, S., Doo, S.: High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries. J. Power. Sources 273, 210–215 (2015)
CrossRef Google scholar
[35]
Chen, W., Zhan, X., Luo, B., Ou, Z., Shih, P., Yao, L., Pidaparthy, S., Patra, A., An, H., Braun, P.V., Stephens, R.M., Yang, H., Zuo, J., Chen, Q.: Effects of particle size on Mg2+ ion intercalation into λ-MnO2 cathode materials. Nano Lett. 19(7), 4712–4720 (2019)
CrossRef Google scholar
[36]
Zhang, C., Zhan, X., Al-Zoubi, T., Ma, Y., Shih, P., Wang, F., Chen, W., Pidaparthy, S., Stephens, R.M., Chen, Q., Zuo, J., Yang, H.: Electrochemical generation of birnessite MnO2 nanoflowers for intercalation of Mg2+ ions. Nano Energy 102, 107696 (2022)
CrossRef Google scholar
[37]
Clites, M., Pomerantseva, E.: Bilayered vanadium oxides by chemical pre-intercalation of alkali and alkali-earth ions as battery electrodes. Energy Storage Mater. 11, 30–37 (2018)
CrossRef Google scholar
[38]
Tang, H., Xiong, F., Jiang, Y., Pei, C., Tan, S., Yang, W., Li, M., An, Q., Mai, L.: Alkali ions pre-intercalated layered vanadium oxide nanowires for stable magnesium ions storage. Nano Energy 58, 347–354 (2019)
CrossRef Google scholar
[39]
Rasul, S., Suzuki, S., Yamaguchi, S., Miyayama, M.: High capacity positive electrodes for secondary Mg-ion batteries. Electrochim. Acta 82, 243–249 (2012)
CrossRef Google scholar
[40]
Augustyn, V., Come, J., Lowe, M.A., Kim, J.W., Taberna, P., Tolbert, S.H., Abruña, H.D., Simon, P., Dunn, B.: High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518–522 (2013)
CrossRef Google scholar
[41]
Choi, C., Ashby, D.S., Butts, D.M., DeBlock, R.H., Wei, Q., Lau, J., Dunn, B.: Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5(1), 5–19 (2020)
CrossRef Google scholar
[42]
Koketsu, T., Ma, J., Morgan, B.J., Body, M., Legein, C., Dachraoui, W., Giannini, M., Demortière, A., Salanne, M., Dardoize, F., Groult, H., Borkiewicz, O.J., Chapman, K.W., Strasser, P., Dambournet, D.: Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat. Mater. 16(11), 1142–1148 (2017)
CrossRef Google scholar
[43]
Wu, D., Zhuang, Y., Wang, F., Yang, Y., Zeng, J., Zhao, J.: High-rate performance magnesium batteries achieved by direct growth of honeycomb-like V2O5 electrodes with rich oxygen vacancies. Nano Res. 16(4), 4880–4887 (2023)
CrossRef Google scholar
[44]
Yuan, C., Zhang, Y., Pan, Y., Liu, X., Wang, G., Cao, D.: Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery. Electrochim. Acta 116, 404–412 (2014)
CrossRef Google scholar
[45]
Liu, M., Rong, Z., Malik, R., Canepa, P., Jain, A., Ceder, G., Persson, K.A.: Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations. Energy Environ. Sci. 8(3), 964–974 (2015)
CrossRef Google scholar
[46]
Wu, C., Gu, S., Zhang, Q., Bai, Y., Li, M., Yuan, Y., Wang, H., Liu, X., Yuan, Y., Zhu, N., Wu, F., Li, H., Gu, L., Lu, J.: Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat. Commun. 10(1), 73 (2019)
CrossRef Google scholar
[47]
Gu, S., Wang, H., Wu, C., Bai, Y., Li, H., Wu, F.: Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Mater. 6, 9–17 (2017)
CrossRef Google scholar
[48]
Yang, H., Li, H., Li, J., Sun, Z., He, K., Cheng, H.-M., Li, F.: The rechargeable aluminum battery: opportunities and challenges. Angew. Chem. Int. Ed. 58(35), 11978–11996 (2019)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(1323 KB)

Accesses

Citations

Detail

Sections
Recommended

/