RESEARCH ARTICLE

Role of chloride on the instability of blue emitting mixed-halide perovskites

  • Max Karlsson 1 ,
  • Jiajun Qin 1 ,
  • Kaifeng Niu 1 ,
  • Xiyu Luo 1,2 ,
  • Johanna Rosen 1 ,
  • Jonas Björk 1 ,
  • Lian Duan 2 ,
  • Weidong Xu , 1,3 ,
  • Feng Gao , 1
Expand
  • 1. Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
  • 2. Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
  • 3. Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi’an 710072, China
ifewdxu@nwpu.edu.cn
feng.gao@liu.se

Received date: 14 Aug 2023

Accepted date: 06 Oct 2023

Copyright

2023 The Author(s) 2023

Abstract

Although perovskite light-emitting diodes (PeLEDs) have seen unprecedented development in device efficiency over the past decade, they suffer significantly from poor operational stability. This is especially true for blue PeLEDs, whose operational lifetime remains orders of magnitude behind their green and red counterparts. Here, we systematically investigate this efficiency-stability discrepancy in a series of green- to blue-emitting PeLEDs based on mixed Br/Cl-perovskites. We find that chloride incorporation, while having only a limited impact on efficiency, detrimentally affects device stability even in small amounts. Device lifetime drops exponentially with increasing Cl-content, accompanied by an increased rate of change in electrical properties during operation. We ascribe this phenomenon to an increased mobility of halogen ions in the mixed-halide lattice due to an increased chemically and structurally disordered landscape with reduced migration barriers. Our results indicate that the stability enhancement for PeLEDs might require different strategies from those used for improving efficiency.

Cite this article

Max Karlsson , Jiajun Qin , Kaifeng Niu , Xiyu Luo , Johanna Rosen , Jonas Björk , Lian Duan , Weidong Xu , Feng Gao . Role of chloride on the instability of blue emitting mixed-halide perovskites[J]. Frontiers of Optoelectronics, 2023 , 16(4) : 37 . DOI: 10.1007/s12200-023-00088-x

1
Liu,X.K., Xu,W., Bai,S., Jin, Y., Wang,J., Friend,R.H., Gao,F.: Metal halide perovskites for light-emitting diodes. Nat. Mater. 20(1), 10–21 (2021)

DOI

2
Jiang,Y., Sun,C., Xu,J., Li, S., Cui,M., Fu,X., Liu,Y., Liu,Y., Wan, H., Wei,K., Zhou,T., Zhang,W., Yang,Y., Yang, J., Qin,C., Gao,S., Pan,J., Liu,Y., Hoogland, S., Sargent,E.H., Chen,J., Yuan,M.: Synthesis-on-substrate of quantum dot solids. Nature 612(7941), 679–684 (2022)

DOI

3
Ball,J.M., Petrozza, A.: Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1(11), 16149 (2016)

DOI

4
Yang,D., Zhao,B., Yang,T., Lai, R., Lan,D., Friend,R.H., Di,D.: Toward stable and efficient perovskite light-emitting diodes. Adv. Funct. Mater.Funct. Mater. 32(9), 2109495 (2021)

DOI

5
Yantara,N., Jamaludin, N.F., Febriansyah,B., Giovanni,D., Bruno,A., Soci,C., Sum, T.C., Mhaisalkar,S., Mathews,N.: Designing the perovskite structural landscape for efficient blue emission. ACS Energy Lett. 5(5), 1593–1600 (2020)

DOI

6
Yang,X., Zhang,X., Deng,J., Chu, Z., Jiang,Q., Meng,J., Wang,P., Zhang,L., Yin, Z., You,J.: Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun.Commun. 9(1), 570 (2018)

DOI

7
Li,N., Song,L., Jia,Y., Dong, Y., Xie,F., Wang,L., Tao,S., Zhao,N.: Stabilizing perovskite light-emitting diodes by incorporation of binary alkali cations. Adv. Mater. 32(17), 1907786 (2020)

DOI

8
Xia,Y., Lou,Y.-H., Zhou,Y.-H., Wang, K.-L., Chen,J., Wang,Z.-K., Liao,L.-S.: Solvent strategies toward high-performance perovskite light-emitting diodes. J. Mater. Chem. C 10(9), 3276–3286 (2022)

DOI

9
Karlsson,M., Yi,Z., Reichert,S., Luo, X., Lin,W., Zhang,Z., Bao,C., Zhang,R., Bai, S., Zheng,G., Teng,P., Duan,L., Lu,Y., Zheng, K., Pullerits,T., Deibel,C., Xu,W., Friend,R., Gao, F.: Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat. Commun.Commun. 12(1), 361 (2021)

DOI

10
Zhang,F., Min,H., Zhang,Y., Kuang, Z., Wang,J., Feng,Z., Wen,K., Xu,L., Yang, C., Shi,H., Zhuo,C., Wang,N., Chang,J., Huang, W., Wang,J.: Vapor-assisted in situ recrystallization for efficient tin-based perovskite light-emitting diodes. Adv. Mater. 34(37), 2203180 (2022)

DOI

11
Guo,Y., Apergi, S., Li,N., Chen,M., Yin,C., Yuan,Z., Gao, F., Xie,F., Brocks,G., Tao,S., Zhao,N.: Phenylalkylammonium passivation enables perovskite light emitting diodes with record high-radiance operational lifetime: the chain length matters. Nat. Commun.Commun. 12(1), 644 (2021)

DOI

12
Zou,Y., Teng,P., Xu,W., Zheng, G., Lin,W., Yin,J., Kobera, L., Abbrent,S., Li,X., Steele, J.A., Solano,E., Roeffaers,M.B.J., Li, J., Cai,L., Kuang,C., Scheblykin, I.G., Brus,J., Zheng,K., Yang,Y., Mohammed,O.F., Bakr,O.M., Pullerits, T., Bai,S., Sun,B., Gao,F.: Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters. Nat. Commun. Commun. 12(1), 4831 (2021)

DOI

13
Jamaludin,N.F., Yantara, N., Febriansyah,B., Tay,Y.B., Muhammad, B.T., Laxmi,S., Lim,S.S., Sum,T.C., Mhaisalkar,S., Mathews,N.: Additives in halide perovskite for blue-light-emitting diodes: passivating agents or crystallization modulators? ACS Energy Lett. 6(12), 4265–4272 (2021)

DOI

14
Cao,Y., Wang,N., Tian,H., Guo, J., Wei,Y., Chen,H., Miao,Y., Zou,W., Pan, K., He,Y., Cao,H., Ke,Y., Xu,M., Wang, Y., Yang,M., Du,K., Fu,Z., Kong,D., Dai, D., Jin,Y., Li,G., Li,H., Peng,Q., Wang, J., Huang,W.: Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562(7726), 249–253 (2018)

DOI

15
Xu,W., Hu,Q., Bai,S., Bao, C., Miao,Y., Yuan,Z., Borzda, T., Barker,A.J., Tyukalova,E., Hu,Z., Kawecki,M., Wang, H., Yan,Z., Liu,X., Shi,X., Uvdal,K., Fahlman, M., Zhang,W., Duchamp,M., Liu,J.-M., Petrozza,A., Wang, J., Liu,L.-M., Huang,W., Gao,F.: Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13(6), 418–424 (2019)

DOI

16
Li,N., Jia,Y., Guo,Y., Zhao, N.: Ion migration in perovskite light-emitting diodes: mechanism, characterizations, and material and device engineering. Adv. Mater. 34(19), 2108102 (2022)

DOI

17
Yuan,Y., Huang,J.: Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49(2), 286–293 (2016)

DOI

18
Chen,Z., Li,Z., Hopper,T.R., Bakulin, A.A., Yip,H.L.: Materials, photophysics and device engineering of perovskite light-emitting diodes. Reports Prog. Phys. 84(4), 046401 (2021)

DOI

19
Chen,B., Rudd,P.N., Yang,S., Yuan, Y., Huang,J.: Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48(14), 3842–3867 (2019)

DOI

20
Ahmed,G.H., El-Demellawi, J.K., Yin,J., Pan,J., Velusamy, D.B., Hedhili,M.N., Alarousu,E., Bakr,O.M., Alshareef,H.N., Mohammed,O.F.: Giant photoluminescence enhancement in cspbcl3 perovskite nanocrystals by simultaneous dual-surface passivation. ACS Energy Lett. 3(10), 2301–2307 (2018)

DOI

21
Nenon,D.P., Pressler, K., Kang,J., Koscher,B.A., Olshansky, J.H., Osowiecki,W.T., Koc,M.A., Wang,L.W., Alivisatos,A.P.: Design principles for trap-free cspbx3 nanocrystals: enumerating and eliminating surface halide vacancies with softer lewis bases. J. Am. Chem. Soc. 140(50), 17760–17772 (2018)

DOI

22
Wu,Y., Li,X., Zeng,H.: Highly luminescent and stable halide perovskite nanocrystals. ACS Energy Lett. 4(3), 673–681 (2019)

DOI

23
Miao,Y., Ke,Y., Wang,N., Zou, W., Xu,M., Cao,Y., Sun,Y., Yang,R., Wang, Y., Tong,Y., Xu,W., Zhang,L., Li,R., Li, J., He,H., Jin,Y., Gao,F., Huang,W., Wang, J.: Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency. Nat. Commun.Commun. 10(1), 3624 (2019)

DOI

24
Teng,P., Reichert, S., Xu,W., Yang,S.-C., Fu,F., Zou,Y., Yin, C., Bao,C., Karlsson,M., Liu,X., Qin,J., Yu, T., Tress,W., Yang,Y., Sun,B., Deibel,C., Gao, F.: Degradation and self-repairing in perovskite light-emitting diodes. Matter 4(11), 3710–3724 (2021)

DOI

25
Snaith,H.J., Abate,A., Ball,J.M., Eperon, G.E., Leijtens,T., Noel,N.K., Stranks, S.D., Wang,J.T., Wojciechowski,K., Zhang, W.: Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5(9), 1511–1515 (2014)

DOI

26
Xiao,Z., Kerner, R.A., Zhao,L., Tran,N.L., Lee,K.M., Koh,T.-W., Scholes, G.D., Rand,B.P.: Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11(2), 108–115 (2017)

DOI

27
Wang,H., Chen,Z., Hu,J., Yu, H., Kuang,C., Qin,J., Liu,X., Lu,Y., Fahlman, M., Hou,L., Liu,X.K., Gao,F.: Dynamic redistribution of mobile ions in perovskite light-emitting diodes. Adv. Funct. Mater.Funct. Mater. 31(8), 2007596 (2020)

DOI

28
Tress,W.: Metal halide perovskites as mixed electronic-ionic conductors: challenges and opportunities-from hysteresis to memristivity. J. Phys. Chem. Lett. 8(13), 3106–3114 (2017)

DOI

29
Kim,H., Zhao,L., Price,J.S., Grede, A.J., Roh,K., Brigeman,A.N., Lopez,M., Rand,B.P., Giebink, N.C.: Hybrid perovskite light emitting diodes under intense electrical excitation. Nat. Commun.Commun. 9(1), 4893 (2018)

DOI

30
Kumawat,N.K., Tress,W., Gao,F.: Mobile ions determine the luminescence yield of perovskite light-emitting diodes under pulsed operation. Nat. Commun.Commun. 12(1), 4899 (2021)

DOI

31
Kerner,R.A., Schulz, P., Christians,J.A., Dunfield,S.P., Dou,B., Zhao,L., Teeter, G., Berry,J.J., Rand,B.P.: Reactions at noble metal contacts with methylammonium lead triiodide perovskites: role of underpotential deposition and electrochemistry. APL Mater. 7(4), 041103 (2019)

DOI

32
Zou,Y., Wu,T., Fu,F., Bai, S., Cai,L., Yuan,Z., Li,Y., Li,R., Xu, W., Song,T., Yang,Y., Gao,X., Gao,F., Sun, B.: Thermal-induced interface degradation in perovskite light-emitting diodes. J. Mater. Chem. C 8(43), 15079–15085 (2020)

DOI

33
Woo,Y.W., Jung,Y.-K., Kim,G.Y., Kim, S., Walsh,A.: Factors influencing halide vacancy transport in perovskite solar cells. Mater. Discov. 2(1), 8 (2022)

DOI

34
Kresse,G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996)

DOI

35
Blöchl,P.E.: Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994)

DOI

36
Hamada,I.V.: Van der Waals density functional made accurate. Phys. Rev. B 89(12), 121103 (2014)

DOI

37
Dion,M., Rydberg, H., Schröder,E., Langreth,D.C., Lundqvist, B.I.: Van der waals density functional for general geometries. Phys. Rev. Lett. 92(24), 22–25 (2004)

DOI

38
Henkelman,G., Uberuaga, B.P., Jónsson,H.: Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000)

DOI

39
Henkelman,G., Jónsson, H.: A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111(15), 7010–7022 (1999)

DOI

Outlines

/