Role of chloride on the instability of blue emitting mixed-halide perovskites
Received date: 14 Aug 2023
Accepted date: 06 Oct 2023
Copyright
Although perovskite light-emitting diodes (PeLEDs) have seen unprecedented development in device efficiency over the past decade, they suffer significantly from poor operational stability. This is especially true for blue PeLEDs, whose operational lifetime remains orders of magnitude behind their green and red counterparts. Here, we systematically investigate this efficiency-stability discrepancy in a series of green- to blue-emitting PeLEDs based on mixed Br/Cl-perovskites. We find that chloride incorporation, while having only a limited impact on efficiency, detrimentally affects device stability even in small amounts. Device lifetime drops exponentially with increasing Cl-content, accompanied by an increased rate of change in electrical properties during operation. We ascribe this phenomenon to an increased mobility of halogen ions in the mixed-halide lattice due to an increased chemically and structurally disordered landscape with reduced migration barriers. Our results indicate that the stability enhancement for PeLEDs might require different strategies from those used for improving efficiency.
Max Karlsson , Jiajun Qin , Kaifeng Niu , Xiyu Luo , Johanna Rosen , Jonas Björk , Lian Duan , Weidong Xu , Feng Gao . Role of chloride on the instability of blue emitting mixed-halide perovskites[J]. Frontiers of Optoelectronics, 2023 , 16(4) : 37 . DOI: 10.1007/s12200-023-00088-x
1 |
Liu,X.K., Xu,W., Bai,S., Jin, Y., Wang,J., Friend,R.H., Gao,F.: Metal halide perovskites for light-emitting diodes. Nat. Mater. 20(1), 10–21 (2021)
|
2 |
Jiang,Y., Sun,C., Xu,J., Li, S., Cui,M., Fu,X., Liu,Y., Liu,Y., Wan, H., Wei,K., Zhou,T., Zhang,W., Yang,Y., Yang, J., Qin,C., Gao,S., Pan,J., Liu,Y., Hoogland, S., Sargent,E.H., Chen,J., Yuan,M.: Synthesis-on-substrate of quantum dot solids. Nature 612(7941), 679–684 (2022)
|
3 |
Ball,J.M., Petrozza, A.: Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1(11), 16149 (2016)
|
4 |
Yang,D., Zhao,B., Yang,T., Lai, R., Lan,D., Friend,R.H., Di,D.: Toward stable and efficient perovskite light-emitting diodes. Adv. Funct. Mater.Funct. Mater. 32(9), 2109495 (2021)
|
5 |
Yantara,N., Jamaludin, N.F., Febriansyah,B., Giovanni,D., Bruno,A., Soci,C., Sum, T.C., Mhaisalkar,S., Mathews,N.: Designing the perovskite structural landscape for efficient blue emission. ACS Energy Lett. 5(5), 1593–1600 (2020)
|
6 |
Yang,X., Zhang,X., Deng,J., Chu, Z., Jiang,Q., Meng,J., Wang,P., Zhang,L., Yin, Z., You,J.: Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun.Commun. 9(1), 570 (2018)
|
7 |
Li,N., Song,L., Jia,Y., Dong, Y., Xie,F., Wang,L., Tao,S., Zhao,N.: Stabilizing perovskite light-emitting diodes by incorporation of binary alkali cations. Adv. Mater. 32(17), 1907786 (2020)
|
8 |
Xia,Y., Lou,Y.-H., Zhou,Y.-H., Wang, K.-L., Chen,J., Wang,Z.-K., Liao,L.-S.: Solvent strategies toward high-performance perovskite light-emitting diodes. J. Mater. Chem. C 10(9), 3276–3286 (2022)
|
9 |
Karlsson,M., Yi,Z., Reichert,S., Luo, X., Lin,W., Zhang,Z., Bao,C., Zhang,R., Bai, S., Zheng,G., Teng,P., Duan,L., Lu,Y., Zheng, K., Pullerits,T., Deibel,C., Xu,W., Friend,R., Gao, F.: Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat. Commun.Commun. 12(1), 361 (2021)
|
10 |
Zhang,F., Min,H., Zhang,Y., Kuang, Z., Wang,J., Feng,Z., Wen,K., Xu,L., Yang, C., Shi,H., Zhuo,C., Wang,N., Chang,J., Huang, W., Wang,J.: Vapor-assisted in situ recrystallization for efficient tin-based perovskite light-emitting diodes. Adv. Mater. 34(37), 2203180 (2022)
|
11 |
Guo,Y., Apergi, S., Li,N., Chen,M., Yin,C., Yuan,Z., Gao, F., Xie,F., Brocks,G., Tao,S., Zhao,N.: Phenylalkylammonium passivation enables perovskite light emitting diodes with record high-radiance operational lifetime: the chain length matters. Nat. Commun.Commun. 12(1), 644 (2021)
|
12 |
Zou,Y., Teng,P., Xu,W., Zheng, G., Lin,W., Yin,J., Kobera, L., Abbrent,S., Li,X., Steele, J.A., Solano,E., Roeffaers,M.B.J., Li, J., Cai,L., Kuang,C., Scheblykin, I.G., Brus,J., Zheng,K., Yang,Y., Mohammed,O.F., Bakr,O.M., Pullerits, T., Bai,S., Sun,B., Gao,F.: Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters. Nat. Commun. Commun. 12(1), 4831 (2021)
|
13 |
Jamaludin,N.F., Yantara, N., Febriansyah,B., Tay,Y.B., Muhammad, B.T., Laxmi,S., Lim,S.S., Sum,T.C., Mhaisalkar,S., Mathews,N.: Additives in halide perovskite for blue-light-emitting diodes: passivating agents or crystallization modulators? ACS Energy Lett. 6(12), 4265–4272 (2021)
|
14 |
Cao,Y., Wang,N., Tian,H., Guo, J., Wei,Y., Chen,H., Miao,Y., Zou,W., Pan, K., He,Y., Cao,H., Ke,Y., Xu,M., Wang, Y., Yang,M., Du,K., Fu,Z., Kong,D., Dai, D., Jin,Y., Li,G., Li,H., Peng,Q., Wang, J., Huang,W.: Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562(7726), 249–253 (2018)
|
15 |
Xu,W., Hu,Q., Bai,S., Bao, C., Miao,Y., Yuan,Z., Borzda, T., Barker,A.J., Tyukalova,E., Hu,Z., Kawecki,M., Wang, H., Yan,Z., Liu,X., Shi,X., Uvdal,K., Fahlman, M., Zhang,W., Duchamp,M., Liu,J.-M., Petrozza,A., Wang, J., Liu,L.-M., Huang,W., Gao,F.: Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13(6), 418–424 (2019)
|
16 |
Li,N., Jia,Y., Guo,Y., Zhao, N.: Ion migration in perovskite light-emitting diodes: mechanism, characterizations, and material and device engineering. Adv. Mater. 34(19), 2108102 (2022)
|
17 |
Yuan,Y., Huang,J.: Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49(2), 286–293 (2016)
|
18 |
Chen,Z., Li,Z., Hopper,T.R., Bakulin, A.A., Yip,H.L.: Materials, photophysics and device engineering of perovskite light-emitting diodes. Reports Prog. Phys. 84(4), 046401 (2021)
|
19 |
Chen,B., Rudd,P.N., Yang,S., Yuan, Y., Huang,J.: Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48(14), 3842–3867 (2019)
|
20 |
Ahmed,G.H., El-Demellawi, J.K., Yin,J., Pan,J., Velusamy, D.B., Hedhili,M.N., Alarousu,E., Bakr,O.M., Alshareef,H.N., Mohammed,O.F.: Giant photoluminescence enhancement in cspbcl3 perovskite nanocrystals by simultaneous dual-surface passivation. ACS Energy Lett. 3(10), 2301–2307 (2018)
|
21 |
Nenon,D.P., Pressler, K., Kang,J., Koscher,B.A., Olshansky, J.H., Osowiecki,W.T., Koc,M.A., Wang,L.W., Alivisatos,A.P.: Design principles for trap-free cspbx3 nanocrystals: enumerating and eliminating surface halide vacancies with softer lewis bases. J. Am. Chem. Soc. 140(50), 17760–17772 (2018)
|
22 |
Wu,Y., Li,X., Zeng,H.: Highly luminescent and stable halide perovskite nanocrystals. ACS Energy Lett. 4(3), 673–681 (2019)
|
23 |
Miao,Y., Ke,Y., Wang,N., Zou, W., Xu,M., Cao,Y., Sun,Y., Yang,R., Wang, Y., Tong,Y., Xu,W., Zhang,L., Li,R., Li, J., He,H., Jin,Y., Gao,F., Huang,W., Wang, J.: Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency. Nat. Commun.Commun. 10(1), 3624 (2019)
|
24 |
Teng,P., Reichert, S., Xu,W., Yang,S.-C., Fu,F., Zou,Y., Yin, C., Bao,C., Karlsson,M., Liu,X., Qin,J., Yu, T., Tress,W., Yang,Y., Sun,B., Deibel,C., Gao, F.: Degradation and self-repairing in perovskite light-emitting diodes. Matter 4(11), 3710–3724 (2021)
|
25 |
Snaith,H.J., Abate,A., Ball,J.M., Eperon, G.E., Leijtens,T., Noel,N.K., Stranks, S.D., Wang,J.T., Wojciechowski,K., Zhang, W.: Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5(9), 1511–1515 (2014)
|
26 |
Xiao,Z., Kerner, R.A., Zhao,L., Tran,N.L., Lee,K.M., Koh,T.-W., Scholes, G.D., Rand,B.P.: Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11(2), 108–115 (2017)
|
27 |
Wang,H., Chen,Z., Hu,J., Yu, H., Kuang,C., Qin,J., Liu,X., Lu,Y., Fahlman, M., Hou,L., Liu,X.K., Gao,F.: Dynamic redistribution of mobile ions in perovskite light-emitting diodes. Adv. Funct. Mater.Funct. Mater. 31(8), 2007596 (2020)
|
28 |
Tress,W.: Metal halide perovskites as mixed electronic-ionic conductors: challenges and opportunities-from hysteresis to memristivity. J. Phys. Chem. Lett. 8(13), 3106–3114 (2017)
|
29 |
Kim,H., Zhao,L., Price,J.S., Grede, A.J., Roh,K., Brigeman,A.N., Lopez,M., Rand,B.P., Giebink, N.C.: Hybrid perovskite light emitting diodes under intense electrical excitation. Nat. Commun.Commun. 9(1), 4893 (2018)
|
30 |
Kumawat,N.K., Tress,W., Gao,F.: Mobile ions determine the luminescence yield of perovskite light-emitting diodes under pulsed operation. Nat. Commun.Commun. 12(1), 4899 (2021)
|
31 |
Kerner,R.A., Schulz, P., Christians,J.A., Dunfield,S.P., Dou,B., Zhao,L., Teeter, G., Berry,J.J., Rand,B.P.: Reactions at noble metal contacts with methylammonium lead triiodide perovskites: role of underpotential deposition and electrochemistry. APL Mater. 7(4), 041103 (2019)
|
32 |
Zou,Y., Wu,T., Fu,F., Bai, S., Cai,L., Yuan,Z., Li,Y., Li,R., Xu, W., Song,T., Yang,Y., Gao,X., Gao,F., Sun, B.: Thermal-induced interface degradation in perovskite light-emitting diodes. J. Mater. Chem. C 8(43), 15079–15085 (2020)
|
33 |
Woo,Y.W., Jung,Y.-K., Kim,G.Y., Kim, S., Walsh,A.: Factors influencing halide vacancy transport in perovskite solar cells. Mater. Discov. 2(1), 8 (2022)
|
34 |
Kresse,G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996)
|
35 |
Blöchl,P.E.: Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994)
|
36 |
Hamada,I.V.: Van der Waals density functional made accurate. Phys. Rev. B 89(12), 121103 (2014)
|
37 |
Dion,M., Rydberg, H., Schröder,E., Langreth,D.C., Lundqvist, B.I.: Van der waals density functional for general geometries. Phys. Rev. Lett. 92(24), 22–25 (2004)
|
38 |
Henkelman,G., Uberuaga, B.P., Jónsson,H.: Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000)
|
39 |
Henkelman,G., Jónsson, H.: A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111(15), 7010–7022 (1999)
|
/
〈 | 〉 |