Role of chloride on the instability of blue emitting mixed-halide perovskites
Max Karlsson, Jiajun Qin, Kaifeng Niu, Xiyu Luo, Johanna Rosen, Jonas Björk, Lian Duan, Weidong Xu, Feng Gao
Role of chloride on the instability of blue emitting mixed-halide perovskites
Although perovskite light-emitting diodes (PeLEDs) have seen unprecedented development in device efficiency over the past decade, they suffer significantly from poor operational stability. This is especially true for blue PeLEDs, whose operational lifetime remains orders of magnitude behind their green and red counterparts. Here, we systematically investigate this efficiency-stability discrepancy in a series of green- to blue-emitting PeLEDs based on mixed Br/Cl-perovskites. We find that chloride incorporation, while having only a limited impact on efficiency, detrimentally affects device stability even in small amounts. Device lifetime drops exponentially with increasing Cl-content, accompanied by an increased rate of change in electrical properties during operation. We ascribe this phenomenon to an increased mobility of halogen ions in the mixed-halide lattice due to an increased chemically and structurally disordered landscape with reduced migration barriers. Our results indicate that the stability enhancement for PeLEDs might require different strategies from those used for improving efficiency.
Ion migration / Blue electroluminescence / Mixed halide perovskites
[1] |
Liu,X.K., Xu,W., Bai,S., Jin, Y., Wang,J., Friend,R.H., Gao,F.: Metal halide perovskites for light-emitting diodes. Nat. Mater. 20(1), 10–21 (2021)
CrossRef
Google scholar
|
[2] |
Jiang,Y., Sun,C., Xu,J., Li, S., Cui,M., Fu,X., Liu,Y., Liu,Y., Wan, H., Wei,K., Zhou,T., Zhang,W., Yang,Y., Yang, J., Qin,C., Gao,S., Pan,J., Liu,Y., Hoogland, S., Sargent,E.H., Chen,J., Yuan,M.: Synthesis-on-substrate of quantum dot solids. Nature 612(7941), 679–684 (2022)
CrossRef
Google scholar
|
[3] |
Ball,J.M., Petrozza, A.: Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1(11), 16149 (2016)
CrossRef
Google scholar
|
[4] |
Yang,D., Zhao,B., Yang,T., Lai, R., Lan,D., Friend,R.H., Di,D.: Toward stable and efficient perovskite light-emitting diodes. Adv. Funct. Mater.Funct. Mater. 32(9), 2109495 (2021)
CrossRef
Google scholar
|
[5] |
Yantara,N., Jamaludin, N.F., Febriansyah,B., Giovanni,D., Bruno,A., Soci,C., Sum, T.C., Mhaisalkar,S., Mathews,N.: Designing the perovskite structural landscape for efficient blue emission. ACS Energy Lett. 5(5), 1593–1600 (2020)
CrossRef
Google scholar
|
[6] |
Yang,X., Zhang,X., Deng,J., Chu, Z., Jiang,Q., Meng,J., Wang,P., Zhang,L., Yin, Z., You,J.: Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun.Commun. 9(1), 570 (2018)
CrossRef
Google scholar
|
[7] |
Li,N., Song,L., Jia,Y., Dong, Y., Xie,F., Wang,L., Tao,S., Zhao,N.: Stabilizing perovskite light-emitting diodes by incorporation of binary alkali cations. Adv. Mater. 32(17), 1907786 (2020)
CrossRef
Google scholar
|
[8] |
Xia,Y., Lou,Y.-H., Zhou,Y.-H., Wang, K.-L., Chen,J., Wang,Z.-K., Liao,L.-S.: Solvent strategies toward high-performance perovskite light-emitting diodes. J. Mater. Chem. C 10(9), 3276–3286 (2022)
CrossRef
Google scholar
|
[9] |
Karlsson,M., Yi,Z., Reichert,S., Luo, X., Lin,W., Zhang,Z., Bao,C., Zhang,R., Bai, S., Zheng,G., Teng,P., Duan,L., Lu,Y., Zheng, K., Pullerits,T., Deibel,C., Xu,W., Friend,R., Gao, F.: Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat. Commun.Commun. 12(1), 361 (2021)
CrossRef
Google scholar
|
[10] |
Zhang,F., Min,H., Zhang,Y., Kuang, Z., Wang,J., Feng,Z., Wen,K., Xu,L., Yang, C., Shi,H., Zhuo,C., Wang,N., Chang,J., Huang, W., Wang,J.: Vapor-assisted in situ recrystallization for efficient tin-based perovskite light-emitting diodes. Adv. Mater. 34(37), 2203180 (2022)
CrossRef
Google scholar
|
[11] |
Guo,Y., Apergi, S., Li,N., Chen,M., Yin,C., Yuan,Z., Gao, F., Xie,F., Brocks,G., Tao,S., Zhao,N.: Phenylalkylammonium passivation enables perovskite light emitting diodes with record high-radiance operational lifetime: the chain length matters. Nat. Commun.Commun. 12(1), 644 (2021)
CrossRef
Google scholar
|
[12] |
Zou,Y., Teng,P., Xu,W., Zheng, G., Lin,W., Yin,J., Kobera, L., Abbrent,S., Li,X., Steele, J.A., Solano,E., Roeffaers,M.B.J., Li, J., Cai,L., Kuang,C., Scheblykin, I.G., Brus,J., Zheng,K., Yang,Y., Mohammed,O.F., Bakr,O.M., Pullerits, T., Bai,S., Sun,B., Gao,F.: Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters. Nat. Commun. Commun. 12(1), 4831 (2021)
CrossRef
Google scholar
|
[13] |
Jamaludin,N.F., Yantara, N., Febriansyah,B., Tay,Y.B., Muhammad, B.T., Laxmi,S., Lim,S.S., Sum,T.C., Mhaisalkar,S., Mathews,N.: Additives in halide perovskite for blue-light-emitting diodes: passivating agents or crystallization modulators? ACS Energy Lett. 6(12), 4265–4272 (2021)
CrossRef
Google scholar
|
[14] |
Cao,Y., Wang,N., Tian,H., Guo, J., Wei,Y., Chen,H., Miao,Y., Zou,W., Pan, K., He,Y., Cao,H., Ke,Y., Xu,M., Wang, Y., Yang,M., Du,K., Fu,Z., Kong,D., Dai, D., Jin,Y., Li,G., Li,H., Peng,Q., Wang, J., Huang,W.: Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562(7726), 249–253 (2018)
CrossRef
Google scholar
|
[15] |
Xu,W., Hu,Q., Bai,S., Bao, C., Miao,Y., Yuan,Z., Borzda, T., Barker,A.J., Tyukalova,E., Hu,Z., Kawecki,M., Wang, H., Yan,Z., Liu,X., Shi,X., Uvdal,K., Fahlman, M., Zhang,W., Duchamp,M., Liu,J.-M., Petrozza,A., Wang, J., Liu,L.-M., Huang,W., Gao,F.: Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13(6), 418–424 (2019)
CrossRef
Google scholar
|
[16] |
Li,N., Jia,Y., Guo,Y., Zhao, N.: Ion migration in perovskite light-emitting diodes: mechanism, characterizations, and material and device engineering. Adv. Mater. 34(19), 2108102 (2022)
CrossRef
Google scholar
|
[17] |
Yuan,Y., Huang,J.: Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49(2), 286–293 (2016)
CrossRef
Google scholar
|
[18] |
Chen,Z., Li,Z., Hopper,T.R., Bakulin, A.A., Yip,H.L.: Materials, photophysics and device engineering of perovskite light-emitting diodes. Reports Prog. Phys. 84(4), 046401 (2021)
CrossRef
Google scholar
|
[19] |
Chen,B., Rudd,P.N., Yang,S., Yuan, Y., Huang,J.: Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48(14), 3842–3867 (2019)
CrossRef
Google scholar
|
[20] |
Ahmed,G.H., El-Demellawi, J.K., Yin,J., Pan,J., Velusamy, D.B., Hedhili,M.N., Alarousu,E., Bakr,O.M., Alshareef,H.N., Mohammed,O.F.: Giant photoluminescence enhancement in cspbcl3 perovskite nanocrystals by simultaneous dual-surface passivation. ACS Energy Lett. 3(10), 2301–2307 (2018)
CrossRef
Google scholar
|
[21] |
Nenon,D.P., Pressler, K., Kang,J., Koscher,B.A., Olshansky, J.H., Osowiecki,W.T., Koc,M.A., Wang,L.W., Alivisatos,A.P.: Design principles for trap-free cspbx3 nanocrystals: enumerating and eliminating surface halide vacancies with softer lewis bases. J. Am. Chem. Soc. 140(50), 17760–17772 (2018)
CrossRef
Google scholar
|
[22] |
Wu,Y., Li,X., Zeng,H.: Highly luminescent and stable halide perovskite nanocrystals. ACS Energy Lett. 4(3), 673–681 (2019)
CrossRef
Google scholar
|
[23] |
Miao,Y., Ke,Y., Wang,N., Zou, W., Xu,M., Cao,Y., Sun,Y., Yang,R., Wang, Y., Tong,Y., Xu,W., Zhang,L., Li,R., Li, J., He,H., Jin,Y., Gao,F., Huang,W., Wang, J.: Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency. Nat. Commun.Commun. 10(1), 3624 (2019)
CrossRef
Google scholar
|
[24] |
Teng,P., Reichert, S., Xu,W., Yang,S.-C., Fu,F., Zou,Y., Yin, C., Bao,C., Karlsson,M., Liu,X., Qin,J., Yu, T., Tress,W., Yang,Y., Sun,B., Deibel,C., Gao, F.: Degradation and self-repairing in perovskite light-emitting diodes. Matter 4(11), 3710–3724 (2021)
CrossRef
Google scholar
|
[25] |
Snaith,H.J., Abate,A., Ball,J.M., Eperon, G.E., Leijtens,T., Noel,N.K., Stranks, S.D., Wang,J.T., Wojciechowski,K., Zhang, W.: Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5(9), 1511–1515 (2014)
CrossRef
Google scholar
|
[26] |
Xiao,Z., Kerner, R.A., Zhao,L., Tran,N.L., Lee,K.M., Koh,T.-W., Scholes, G.D., Rand,B.P.: Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11(2), 108–115 (2017)
CrossRef
Google scholar
|
[27] |
Wang,H., Chen,Z., Hu,J., Yu, H., Kuang,C., Qin,J., Liu,X., Lu,Y., Fahlman, M., Hou,L., Liu,X.K., Gao,F.: Dynamic redistribution of mobile ions in perovskite light-emitting diodes. Adv. Funct. Mater.Funct. Mater. 31(8), 2007596 (2020)
CrossRef
Google scholar
|
[28] |
Tress,W.: Metal halide perovskites as mixed electronic-ionic conductors: challenges and opportunities-from hysteresis to memristivity. J. Phys. Chem. Lett. 8(13), 3106–3114 (2017)
CrossRef
Google scholar
|
[29] |
Kim,H., Zhao,L., Price,J.S., Grede, A.J., Roh,K., Brigeman,A.N., Lopez,M., Rand,B.P., Giebink, N.C.: Hybrid perovskite light emitting diodes under intense electrical excitation. Nat. Commun.Commun. 9(1), 4893 (2018)
CrossRef
Google scholar
|
[30] |
Kumawat,N.K., Tress,W., Gao,F.: Mobile ions determine the luminescence yield of perovskite light-emitting diodes under pulsed operation. Nat. Commun.Commun. 12(1), 4899 (2021)
CrossRef
Google scholar
|
[31] |
Kerner,R.A., Schulz, P., Christians,J.A., Dunfield,S.P., Dou,B., Zhao,L., Teeter, G., Berry,J.J., Rand,B.P.: Reactions at noble metal contacts with methylammonium lead triiodide perovskites: role of underpotential deposition and electrochemistry. APL Mater. 7(4), 041103 (2019)
CrossRef
Google scholar
|
[32] |
Zou,Y., Wu,T., Fu,F., Bai, S., Cai,L., Yuan,Z., Li,Y., Li,R., Xu, W., Song,T., Yang,Y., Gao,X., Gao,F., Sun, B.: Thermal-induced interface degradation in perovskite light-emitting diodes. J. Mater. Chem. C 8(43), 15079–15085 (2020)
CrossRef
Google scholar
|
[33] |
Woo,Y.W., Jung,Y.-K., Kim,G.Y., Kim, S., Walsh,A.: Factors influencing halide vacancy transport in perovskite solar cells. Mater. Discov. 2(1), 8 (2022)
CrossRef
Google scholar
|
[34] |
Kresse,G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996)
CrossRef
Google scholar
|
[35] |
Blöchl,P.E.: Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994)
CrossRef
Google scholar
|
[36] |
Hamada,I.V.: Van der Waals density functional made accurate. Phys. Rev. B 89(12), 121103 (2014)
CrossRef
Google scholar
|
[37] |
Dion,M., Rydberg, H., Schröder,E., Langreth,D.C., Lundqvist, B.I.: Van der waals density functional for general geometries. Phys. Rev. Lett. 92(24), 22–25 (2004)
CrossRef
Google scholar
|
[38] |
Henkelman,G., Uberuaga, B.P., Jónsson,H.: Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000)
CrossRef
Google scholar
|
[39] |
Henkelman,G., Jónsson, H.: A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111(15), 7010–7022 (1999)
CrossRef
Google scholar
|
/
〈 | 〉 |