RESEARCH ARTICLE

Stable PbS colloidal quantum dot inks enable blade‑coating infrared solar cells

  • Xinzhao Zhao 1 ,
  • Mingyu Li 1 ,
  • Tianjun Ma 1 ,
  • Jun Yan 1 ,
  • Gomaa Mohamed Gomaa Khalaf 1 ,
  • Chao Chen 2 ,
  • Hsien-Yi Hsu , 3 ,
  • Haisheng Song , 1,2,4 ,
  • Jiang Tang 1,2,4
Expand
  • 1. Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
  • 2. School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
  • 3. School of Energy and Environment and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
  • 4. Wenzhou Advanced Manufacturing Technology Research Institute of Huazhong University of Science and Technology, Wenzhou 325035, China
sam.hyhsu@cityu.edu.hk
songhs-wnlo@mail.hust.edu.cn

Received date: 24 Jul 2023

Accepted date: 11 Sep 2023

Published date: 15 Sep 2023

Copyright

2023 The Author(s) 2023

Abstract

Infrared solar cells are more effective than normal bandgap solar cells at reducing the spectral loss in the near-infrared region, thus also at broadening the absorption spectra and improving power conversion efficiency. PbS colloidal quantum dots (QDs) with tunable bandgap are ideal infrared photovoltaic materials. However, QD solar cell production suffers from small-area-based spin-coating fabrication methods and unstable QD ink. Herein, the QD ink stability mechanism was fully investigated according to Lewis acid–base theory and colloid stability theory. We further studied a mixed solvent system using dimethylformamide and butylamine, compatible with the scalable manufacture of method-blade coating. Based on the ink system, 100 cm2 of uniform and dense near-infrared PbS QDs (∼ 0.96 eV) film was successfully prepared by blade coating. The average efficiencies of above absorber-based devices reached 11.14% under AM1.5G illumination, and the 800 nm-filtered efficiency achieved 4.28%. Both were the top values among blade coating method based devices. The newly developed ink showed excellent stability, and the device performance based on the ink stored for 7 h was similar to that of fresh ink. The matched solvent system for stable PbS QD ink represents a crucial step toward large area blade coating photoelectric devices.

Cite this article

Xinzhao Zhao , Mingyu Li , Tianjun Ma , Jun Yan , Gomaa Mohamed Gomaa Khalaf , Chao Chen , Hsien-Yi Hsu , Haisheng Song , Jiang Tang . Stable PbS colloidal quantum dot inks enable blade‑coating infrared solar cells[J]. Frontiers of Optoelectronics, 2023 , 16(3) : 27 . DOI: 10.1007/s12200-023-00085-0

1
Kagan,C.R., Lifshitz, E., Sargent,E.H., Talapin,D.V.: Building devices from colloidal quantum dots. Science 353(6302), aac5523 (2016)

DOI

2
Pradhan,S., Di Stasio, F., Bi,Y., Gupta,S., Christodoulou, S.: High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level. Nat. Nanotechnol. 14(1), 72–79 (2019)

DOI

3
Shen,H., Gao,Q., Zhang,Y., Lin, Y., Lin,Q.: Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photon. 13(3), 192–197 (2019)

DOI

4
Abhishek,S., Ashley, R.M., Erin,M.S., Boris,D.C., David,T.M.: Quantum dot–induced phase stabilization of a-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354(6308), 92–95 (2016)

DOI

5
Kagan,C.R.: Flexible colloidal nanocrystal electronics. Chem. Soc. Rev. 48(6), 1626–1641 (2019)

DOI

6
Tang,X., Ackerman, M.M., Chen,M., Guyot-Sionnest,P.: Dualband infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photon. 13(4), 277–282 (2019)

DOI

7
Gao,J., Fidler, A.F., Klimov,V.: I: Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots. Nat. Commun. 6(1), 8185 (2015)

DOI

8
Tavakoli,M.M., Aashuri, H., Simchi,A., Kalytchuk,S., Fan,Z.: Quasi core/shell lead sulfide/graphene quantum dots for bulk heterojunction solar cells. J. Phys. Chem. C 119(33), 18886–18895 (2015)

DOI

9
Tavakoli,M.M., Simchi, A., Aashuri,H.: Supercritical synthesis and in situ deposition of PbS nanocrystals with oleic acid passivation for quantum dot solar cells. Mater. Chem. Phys. 156, 163–169 (2015)

DOI

10
Tavakoli,M.M., Simchi, A., Fan,Z., Aashuri,H.: Chemical processing of three-dimensional graphene networks on transparent conducting electrodes for depleted-heterojunction quantum dot solar cells. Chem. Commun. 52(2), 323–326 (2016)

DOI

11
Wang,Y., Lu,K., Han,L., Liu, Z., Shi,G.: In situ passivation for efficient PbS quantum dot solar cells by precursor engineering. Adv. Mater. 30(16), 1704871 (2018)

DOI

12
Yuan,M., Liu,M., Sargent,E.H.: Colloidal quantum dot solids for solution-processed solar cells. Nat. Energy 1(3), 1–9 (2016)

DOI

13
Karani,A., Yang,L., Bai,S., Futscher, M.H., Snaith,H.J.: Perovskite/colloidal quantum dot tandem solar cells: theoretical modeling and monolithic structure. ACS Energy Lett. 3(4), 869–874 (2018)

DOI

14
Liu,M., Voznyy, O., Sabatini,R., Garcia de Arquer,F.P., Munir, R.: Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16(2), 258–263 (2017)

DOI

15
Li,M., Chen,S., Zhao,X., Xiong, K., Wang,B.: Matching charge extraction contact for infrared pbs colloidal quantum dot solar cells. Small 18(1), 2105495 (2022)

DOI

16
Zhao,Q., Han,R., Marshall,A.R., Wang,S., Wieliczka, B.M.: Colloidal quantum dot solar cells: progressive deposition techniques and future prospects on large-area fabrication. Adv. Mater. 34(17), 2107888 (2022)

DOI

17
Sukharevska,N., Bederak, D., Goossens,V.M., Momand,J., Duim,H.: Scalable PbS quantum dot solar cell production by blade coating from stable inks. ACS Appl. Mater. Interfaces 13(4), 5195–5207 (2021)

DOI

18
Fan,J.Z., Vafaie, M., Bertens,K., Sytnyk,M., Pina,J.M.: Micron thick colloidal quantum dot solids. Nano Lett. 20(7), 5284–5291 (2020)

DOI

19
Lan,X., Voznyy, O., Garcia de Arquer,F.P., Liu,M., Xu, J.: 10.6% certified colloidal quantum dot solar cells via solventpolarity-engineered halide passivation. Nano Lett. 16(7), 4630–4634 (2016)

DOI

20
Muneer,R., Hashmet, M.R., Pourafshary,P.: Fine migration control in sandstones: surface force analysis and application of dlvo theory. ACS Omega 5(49), 31624–31639 (2020)

DOI

21
Choi,M.J., Kim,Y., Lim,H., Alarousu, E., Adhikari,A.: Tuning solute-redistribution dynamics for scalable fabrication of colloidal quantum-dot optoelectronics. Adv. Mater. 31(32), 1805886 (2019)

DOI

22
Sliz,R., Lejay,M., Fan,J.Z., Choi, M.J., Kinge,S.: Stable colloidal quantum dot inks enable inkjet-printed high-sensitivity infrared photodetectors. ACS Nano 13(10), 11988–11995 (2019)

DOI

23
Li,M., Zhao,X., Zhang,A., Wang, B., Yang,Y.: Organic ligand complementary passivation to Colloidal-quantum-dot surface enables efficient infrared solar cells. Chem. Eng. J. 455, 140961 (2023)

DOI

24
Rose,B.H., Weaver, H.T.: Determination of effective surface recombination velocity and minority-carrier lifetime in high-efficiency Si solar cells. J. Appl. Phys. 54(1), 238–247 (1983)

DOI

25
Brown,P.R., Lunt,R.R., Zhao,N., Osedach, T.P., Wanger,D.D.: Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer. Nano Lett. 11(7), 2955–3961 (2011)

DOI

26
Liao,W., Zhao,D., Yu,Y., Grice, C.R., Wang,C.: Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater. 28(42), 9333–9340 (2016)

DOI

27
Xia,Y., Zhai,G., Zheng,Z., Lian, L., Liu,H.: Solution-processed solar-blind deep ultraviolet photodetectors based on strongly quantum confined ZnS quantum dots. J. Mater. Chem. C 6(42), 11266–11271 (2018)

DOI

28
Zhang,J., Gao,J.: Diffusion-controlled synthesis of pbs and pbse quantum dots with in situ halide passivation for quantum dot solar cells. ACS Nano 8(1), 614–622 (2014)

DOI

Outlines

/