RESEARCH ARTICLE

Upconversion luminescence and optical thermometry behaviors of Yb3+ and Ho3+ co-doped GYTO crystal

  • Chuancheng Zhang 1 ,
  • Shoujun Ding , 1,2,3,4 ,
  • Miaomiao Wang 1 ,
  • Hao Ren 1 ,
  • Xubing Tang 1 ,
  • Yong Zou 1 ,
  • Renqin Dou , 2 ,
  • Wenpeng Liu 2
Expand
  • 1. School of Microelectronics and Data Science, Anhui University of Technology, Maanshan 243002, China
  • 2. Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
  • 3. Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
  • 4. Anhui Provincial Joint Key Laboratory of Disciplines for Industrial Big Data Analysis and Intelligent Decision, Maanshan 243002, China
sjding@ahut.edu.cn
drq0564@mail.ustc.edu.cn

Received date: 18 Jul 2023

Accepted date: 12 Sep 2023

Published date: 15 Sep 2023

Copyright

2023 The Author(s) 2023

Abstract

Optical thermometry based on the upconversion (UC) luminescence intensity ratio (LIR) has attracted considerable attention because of its feasibility for achievement of accurate non-contact temperature measurement. Compared with traditional UC phosphors, optical thermometry based on UC single crystals can achieve faster response and higher sensitivity due to the stability and high thermal conductivity of the single crystals. In this study, a high-quality 5 at% Yb3+ and 1 at% Ho3+ co-doped Gd0.74Y0.2TaO4 single crystal was grown by the Czochralski (Cz) method, and the structure of the as-grown crystal was characterized. Importantly, the UC luminescent properties and optical thermometry behaviors of this crystal were revealed. Under 980 nm wavelength excitation, green and red UC luminescence lines at 550 and 650 nm and corresponding to the 5F4/5S25I8 and 5F55I8 transitions of Ho3+, respectively, were observed. The green and red UC emissions involved a two-photon mechanism, as evidenced by the analysis of power-dependent UC emission spectra. The temperature-dependent UC emission spectra were measured in the temperature range of 330–660 K to assess the optical temperature sensing behavior. At 660 K, the maximum relative sensing sensitivity (Sr) was determined to be 0.0037 K−1. These results highlight the significant potential of Yb,Ho:GYTO single crystal for optical temperature sensors.

Cite this article

Chuancheng Zhang , Shoujun Ding , Miaomiao Wang , Hao Ren , Xubing Tang , Yong Zou , Renqin Dou , Wenpeng Liu . Upconversion luminescence and optical thermometry behaviors of Yb3+ and Ho3+ co-doped GYTO crystal[J]. Frontiers of Optoelectronics, 2023 , 16(3) : 31 . DOI: 10.1007/s12200-023-00083-2

1
Duan, C., Liang, L., Li, L., Zhang, R., Xu, Z.P.: Recent progress in upconversion luminescence nanomaterials for biomedical applications. J. Mater. Chem. B 6, 192–209 (2018)

DOI

2
Zhang, J., Chen, J., Zhang, Y., An, S.: Yb3+/Tm3+ and Yb3+/Ho3+ doped Na9(SiO4)6O2 phosphors: upconversion luminescence processes, temperature-dependent emission spectra and optical temperature-sensing properties. J. Alloy. Compd. 860, 158473 (2021)

DOI

3
Li, M., Chen, B., Zhang, C., Wang, X., Wu, F., Zhao, R.: Crystallization and up-/down-conversion luminescence of size-dependent CdWO4: Yb3+, RE3+ (RE=Ho and Er). Opt. Mater. 142, 113995 (2023)

DOI

4
Wang, J., Su, Q., Lv, Q., Cai, B., Xiaohalati, X., Wang, G., Wang, Z., Wang, L.: Oxygen-generating cyanobacteria powered by upconversion-nanoparticles-converted near-infrared light for ischemic stroke treatment. Nano Lett. 21, 4654–4665 (2021)

DOI

5
Fu, J., Pang, R., Jiang, L., Jia, Y., Sun, W., Zhang, S., Li, C.: A novel dichromic self-referencing optical probe SrO: Bi3+, Eu3+ for temperature spatially and temporally imaging. Dalton Trans. 45, 13317–13323 (2016)

DOI

6
Dubey, A., Soni, A.K., Kumari, A., Dey, R., Rai, V.K.: Enhanced green upconversion emission in NaYF4: Er3+/Yb3+/Li+ phosphors for optical thermometry. J. Alloy. Compd. 693, 194–200 (2017)

DOI

7
Zhao, Y., Wang, X., Zhang, Y., Li, Y., Yao, X.: Optical temperature sensing of up-conversion luminescent materials: Fundamentals and progress. J. Alloy. Compd. 817, 152691 (2020)

DOI

8
Wang, C., Jin, Y., Lv, Y., Ju, G., Liu, D., Chen, L., Li, Z., Hu, Y.: Trap distribution tailoring guided design of super-long-persistent phosphor Ba2SiO4: Eu2+, Ho3+ and photostimulable luminescence for optical information storage. J. Mater. Chem. C 6, 6058–6067 (2018)

DOI

9
Qiao, J., Ning, L., Molokeev, M.S., Chuang, Y.C., Zhang, Q., Poeppelmeier, K.R., Xia, Z.: Site-selective occupancy of Eu2+ toward blue light excited red emission in a Rb3YSi2O7: Eu phosphor. Angew. Chem. Chem. 131, 11645–11650 (2019)

DOI

10
Teixeira, R.N., Baratto, A.C.: A Nickel–carbon eutectic cell for contact and non-contact thermometry. Int. J. Thermophys. Thermophys. 28, 1993–2001 (2007)

DOI

11
He, D., Guo, C., Jiang, S., Zhang, N., Duan, C., Yin, M., Li, T.: Optical temperature sensing properties of Yb3+–Er3+ co-doped NaLnTiO4 (Ln= Gd, Y) up-conversion phosphors. (2014)

DOI

12
Sun, L.-D.,, Dong, H., Zhang, P.-Z.,, Yan, C.-H.: Upconversion of rare earth nanomaterials. Annu. Rev. Phys. Chem. Rev. Phys. Chem. 66, 619–642 (2015)

DOI

13
Cui, S., Chen, G., Chen, Y., Jin, L., Shang, F., Xu, J.: Fabrication, tunable fluorescence emission and energy transfer of Tm3+-Dy3+ co-activated P2O5–B2O3–SrO–K2O glasses. J. Am. Ceram. Soc. 103, 1057–1066 (2020)

DOI

14
Zhang, J., Ji, B., Chen, G., Hua, Z.: Upconversion luminescence and discussion of sensitivity improvement for optical temperature sensing application. Inorg. Chem. Chem. 57, 5038–5047 (2018)

DOI

15
Liu, S., Cui, J., Jia, J., Fu, J., You, W., Zeng, Q., Yang, Y., Ye, X.: High sensitive Ln3+/Tm3+/Yb3+ (Ln3+ = Ho3+, Er3+) tri-doped Ba3Y4O9 upconverting optical thermometric materials based on diverse thermal response from non-thermally coupled energy levels. Ceram. Int. 45, 1–10 (2019)

DOI

16
Liu, L., Xing, J., Shang, F., Chen, G.: Structure and up-conversion luminescence of Yb3+/Ho3+ co-doped fluoroborate glasses. Optics Commun. 490, 126944 (2021)

DOI

17
Tian, Z., Yu, H., Han, Z., Guan, Z., Xu, S., Sun, J., Cao, Y., Wang, Y., Cheng, L., Chen, B.: Luminescence properties, and anti-counterfeiting application of one-dimensional electrospun Y2Ti2O7: Ho/Yb nanostructures. Ceram. Int. 48, 27836–27848 (2022)

DOI

18
Kshetri, Y.K., Chaudhary, B., Dhakal, D.R., Murali, G., Pachhai, S., Lee, S.W., Kim, H.-S., Kim, T.-H.: Anomalous upconversion behavior and high-temperature spectral properties of Yb/Ho-SiAlON ceramics. Ceram. Int. 49, 4807–4815 (2023)

DOI

19
Lim, C.S., Aleksandrovsky, A., Molokeev, M., Oreshonkov, A., Atuchin, V.: Structural and spectroscopic effects of Li+ substitution for Na+ in LixNa1–xCaGd0.5Ho0.05Yb0.45(MoO4)3 scheelite-type upconversion phosphors. Molecules 26, 7357 (2021)

DOI

20
Li, H., Zhang, Y., Shao, L., Yuan, P., Xia, X.: Influence of pump power and doping concentration for optical temperature sensing based on BaZrO3: Yb3+/Ho3+ ceramics. J. Lumin. Lumin. 192, 999–1003 (2017)

DOI

21
Qi, Y., Li, S., Min, Q., Lu, W., Xu, X., Zhou, D., Qiu, J., Wang, L., Yu, X.: Optical temperature sensing properties of KLu2F7: Yb3+/Er3+/Nd3+ nanoparticles under NIR excitation. J. Alloy. Compd. 742, 497–503 (2018)

DOI

22
Lim, C.S., Aleksandrovsky, A., Molokeev, M., Oreshonkov, A., Atuchin, V.: The modulated structure and frequency upconversion properties of CaLa2(MoO4)4:Ho3+/Yb3+ phosphors prepared by microwave synthesis. Phys. Chem. Chem. Phys. 17, 19278–19287 (2015)

DOI

23
Zhang, J.Z., Xia, H.P., Yang, S., Jiang, Y.Z., Xue-mei, G., Zhang, J.L., Jiang, H.C., Chen, B.J.: Upconversion luminescence from Ho3+ and Yb3+ codoped α-NaYF4 single crystals. Chin. J. Chem. Phys. 28, 351–354 (2015)

DOI

24
Pilch, A., Wurth, C., Kaiser, M., Wawrzynczyk, D., Kurnatowska, M., Arabasz, S., Prorok, K., Samoc, M., Strek, W., Resch-Genger, U., Bednarkiewicz, A.: Shaping luminescent properties of Yb3+ and Ho3+ Co-doped upconverting core-shell beta-NaYF4 nanoparticles by dopant distribution and spacing. Small 13, 1701635 (2017)

DOI

25
Tian, Z., Yu, H., Han, Z., Guan, Z., Xu, S., Sun, J., Cao, Y., Wang, Y., Cheng, L., Chen, B.: Luminescence properties, and anti-counterfeiting application of one-dimensional electrospun Y2Ti2O7: Ho/Yb nanostructures. Ceram. Int. 48, 27836–27848 (2022)

DOI

26
Pan, Y., Lin, H., Hong, R., Zhang, D.: Yb, Ho:(La0.1Y0.9)2O3 ceramics for thermometric applications based on the upconversion emission. J. Luminesc. 238, 118293 (2021)

DOI

27
Pandey, A., Rai, V.K.: Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor. Dalton Trans. 42, 11005–11011 (2013)

DOI

28
Rakov, N., Maciel, G.S.: A study of energy transfer phenomenon leading to photon up-conversion in Ho3+: Yb3+:CaF2 crystalline powders and its temperature sensing properties. Curr. Appl. Phys. Appl. Phys. 17, 1223–1231 (2017)

DOI

29
Savchuk, O.A., Carvajal, J.J., Pujol, M.C., Barrera, E.W., Massons, J., Aguilo, M., Diaz, F.: Ho, Yb:KLu(WO4)2 nanoparticles: a versatile material for multiple thermal sensing purposes by luminescent thermometry. J. Phys. Chem. C 119, 18546–18558 (2015)

DOI

30
Liu, L., Xing, J., Shang, F., Chen, G.: Structure and up-conversion luminescence of Yb3+/Ho3+ co-doped fluoroborate glasses. Opt. Commun.Commun. 490, 126944 (2021)

DOI

31
Brixner, L.H.: A study of the calcium molybdate-rare earth niobate systems. J. Electrochem. Soc. Electrochem. Soc. 111, 690 (1964)

DOI

32
van Eijk, C.W.E.: Inorganic-scintillator development. Nucl. Instrum. Methods Phys. Res. Sect. A 460, 1–14 (2001)

DOI

33
Zhang, W., Li, L., Zhou, S., Gao, H.: Efficient continuous-wave diode-pumped Ho:GTO laser with a pump recycling scheme. J. Russ. Laser Res. 41, 94–97 (2020)

DOI

34
Dou, R., Zhang, Q., Sun, D., Luo, J., Yang, H., Liu, W., Sun, G.: Growth, thermal, and spectroscopic properties of a 2.911 μm Yb, Ho:GdYTaO4 laser crystal. CrystEngComm 16, 11007–11012 (2014)

DOI

35
Ren, H., Ding, S., Li, H., Liu, W., Zou, Y., Han, Y., Zhang, Q.: Growth, structure and upconversion properties of Yb3+ and Er3+ co-doped Gd3Sc2Al3O12 crystal. J. Lumin. Lumin. 251, 119149 (2022)

DOI

36
McIlvried, M.: Penn State University, University Park, Pennsylvania, USA, ICDD Grant-in-Aid (1972)

37
Keller, C.: Über ternäre Oxide des Niobs und Tantals vom Typ ABO4. Z. Anorg. Allg. Chem. Anorg. Allg. Chem. 318, 89–106 (1962)

DOI

38
Han, B., Xiao, H., Chen, Y., Huang, J., Gong, X., Lin, Y., Luo, Z., Huang, Y.: Polarized spectroscopic properties and 1046 nm laser operation of Yb3+: Ca3TaGa3Si2O14 crystal. J. Lumin. Lumin. 251, 119219 (2022)

DOI

39
Brunckova, H., Medvecky, L., Mudra, E., Kovalcikova, A., Girman, V.: Structural properties of gadolinium orthoniobate and orthotantalate thin films prepared by sol–gel method. J. Alloy. Compd. 735, 1111–1118 (2018)

DOI

40
Jiang, T., Tian, Y., Xing, M., Fu, Y., Yin, X., Wang, H., Feng, X., Luo, X.: Research on the photoluminescence and up-conversion luminescence properties of Y2Mo4O15: Yb, Ho under 454 and 980 nm excitation. Mater. Res. Bull. 98, 328–334 (2018)

DOI

41
Azam, M., Rai, V.K.: Ho3+-Yb3+ codoped tellurite based glasses in visible lasers and optical devices: Judd-Ofelt analysis and frequency upconversion. Solid State Sci. 66, 7–15 (2017)

DOI

42
Denisenko, Y.G., Atuchin, V.V., Molokeev, M.S., Wang, N., Jiang, X., Aleksandrovsky, A.S., Krylov, A.S., Oreshonkov, A.S., Sedykh, A.E., Volkova, S.S.: Negative thermal expansion in one-dimension of a new double sulfate AgHo (SO4)2 with isolated SO4 tetrahedra. J. Mater. Sci. Technol. 76, 111–121 (2021)

DOI

43
Tanabe, S., Yoshii, S., Hirao, K., Soga, N.: Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphate glasses. Phys. Rev. B 45, 4620 (1992)

DOI

44
Zhang, Y., Cao, Y., Zhao, Y., Wang, X., Ran, S., Cao, L., Zhang, L., Chen, B.: Optical temperature sensor based on upconversion luminescence of Er3+ doped GdTaO4 phosphors. J. Am. Ceram. Soc. 104, 361–368 (2020)

DOI

45
Suyver, J.F., Grimm, J., Van Veen, M., Biner, D., Krämer, K., Güdel, H.-U.: Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+. J. Lumin. Lumin. 117, 1–12 (2006)

DOI

46
Lim, C.S., Atuchin, V.V., Aleksandrovsky, A.S., Molokeev, M.S.: Preparation of NaSrLa (WO4)3: Ho3+/Yb3+ ternary tungstates and their upconversion photoluminescence properties. Mater. Lett. 181, 38–41 (2016)

DOI

47
Lim, C.S., Atuchin, V.V., Aleksandrovsky, A.S., Molokeev, M.S., Oreshonkov, A.S.: Incommensurately modulated structure and spectroscopic properties of CaGd2 (MoO4)4: Ho3+/Yb3+ phosphors for up-conversion applications. J. Alloy. Compd. 695, 737–746 (2017)

DOI

48
Kaminskiĭ, A. A.: Crystalline lasers: physical processes and operating schemes, (No Title) (1996)

49
Gao, W., Zheng, H., Han, Q., He, E., Wang, R.: Unusual upconversion emission from single NaYF4: Yb3+/Ho3+ microrods under NIR excitation. CrystEngComm 16, 6697–6706 (2014)

DOI

50
Pollnau, M., Gamelin, D.R., Lüthi, S., Güdel, H., Hehlen, M.P.: Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 61, 3337 (2000)

DOI

51
Xu, W., Gao, X., Zheng, L., Zhang, Z., Cao, W.: Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior. Opt. Express 20, 18127–18137 (2012)

DOI

52
Guo, Y., Wang, D., He, Y.: Fabrication of highly porous Y2O3: Ho, Yb ceramic and its thermometric applications. J. Alloy. Compd. 741, 1158–1162 (2018)

DOI

53
Zhang, J., Zhang, Y., Jiang, X.: Investigations on upconversion luminescence of K3Y(PO4)2:Yb3+-Er3+/Ho3+/Tm3+ phosphors for optical temperature sensing. J. Alloy. Compd. 748, 438–445 (2018)

DOI

54
Sheng, C., Li, X., Tian, Y., Wang, X., Xu, S., Yu, H., Cao, Y., Chen, B.: Temperature dependence of up-conversion luminescence and sensing properties of LaNbO4: Nd3+/Yb3+/Ho3+ phosphor under 808 nm excitation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. Acta Part A Mol. Biomol. Spectrosc. 244, 118846 (2021)

DOI

55
Liu, W., Xu, S., Lei, L.: Enhancing upconversion of Sc2Mo3O12: Yb/Ln (Ln = Er, Ho) phosphors by doping Ca2+ ions. Opt. Mater. 143, 114166 (2023)

DOI

Outlines

/