RESEARCH ARTICLE

Generation of dual and quad-optical frequency combs in the injected radiation free mode-locked frequency-shifted feedback laser

  • Sergey N. Mantsevich , 1 ,
  • Ekaterina I. Kostyleva , 1 ,
  • Andrey N. Danilin , 1,2 ,
  • Vladimir S. Khorkin , 1
Expand
  • 1. Physics Department, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
  • 2. Russian Quantum Center (RQC), Skolkovo 143026, Russia
snmantsevich@yahoo.com; manboxx@mail.ru
katyakostyleva@mail.ru
andrey_dan98@mail.ru
vld_510@mail.ru

Received date: 27 Jun 2023

Accepted date: 27 Jul 2023

Copyright

2023 The Author(s) 2023

Abstract

The results of an optoelectronic system—frequency-shifted feedback (FSF) laser experimental examination are presented. The considered FSF laser is seeded only with optical amplifier spontaneous emission (ASE) and operates in the mode-locked regime, whereby the output radiation is sequence of short pulses with a repetition rate determined by the delay time in its optical feedback circuit. In the frequency domain, the spectrum of such a pulse sequence is an optical frequency comb (OFC). These OFCs we call initial. We consider the possibility of tunable acousto-optic (AO) dual and quad-comb frequency spacing downconversion in the FSF laser seeded with ASE and operating in the mode-locked regime. The examined system applies a single frequency shifting loop with single AO tunable filter as the frequency shifter that is fed with several radio frequency signals simultaneously. The initial OFCs with frequency spacing of about 6.5 MHz may be obtained in the wide spectral range and their width, envelope shape and position in the optical spectrum may be tuned. The dual-combs are obtained with a pair of initial OFCs aroused by two various ultrasound waves in the acousto-optic tunable filter (AOTF). The dual-combs frequency spacing is determined by the frequency difference of the signals applied to the AOTF piezoelectric transducer and can be tuned simply. The quad-combs are obtained with three initial OFCs, forming a pair of dual-combs, appearing when three ultrasound frequencies feed the AOTF transducer. The quad-combs frequency spacing is defined by the difference between the frequency spacing of dual-combs. Quad-combs with more than 5000 spectral lines and tunable frequency spacing are observed. The successive frequency downconversion gives the possibility to reduce the OFC frequency spacing form several MHz for initial OFC to tens of kHz for quad-combs.

Cite this article

Sergey N. Mantsevich , Ekaterina I. Kostyleva , Andrey N. Danilin , Vladimir S. Khorkin . Generation of dual and quad-optical frequency combs in the injected radiation free mode-locked frequency-shifted feedback laser[J]. Frontiers of Optoelectronics, 2023 , 16(3) : 21 . DOI: 10.1007/s12200-023-00079-y

1
Cundiff, S.T., Ye, J.: Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys. 75(1), 325–342 (2003)

DOI

2
Ohara, T., Takara, H., Yamamoto, T., Masuda, H., Morioka, T., Abe, M., Takahashi, H.: Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source. J. Lightwave Technol. 24(6), 2311–2317 (2006)

DOI

3
Del’Haye, P., Schliesser, A., Arcizet, O., Wilken, T., Holzwarth, R., Kippenberg, T.J.: Optical frequency comb generation from a monolithic microresonator. Nature 450(7173), 1214–1217 (2007)

DOI

4
Li, J., Qu, Y., Yu, R., Wu, Y.: Generation and control of optical frequency combs using cavity electromagnetically induced transparency. Phys. Rev. A (Coll. Park) 97(2), 023826 (2018)

DOI

5
Stefszky, M., Ulvila, V., Abdallah, Z., Silberhorn, C., Vainio, M.: Towards optical frequency-comb generation in continuous-wave-pumped titanium-indiffused lithium-niobate waveguide resonators. Phys. Rev. A (Coll. Park) 98(5), 053850 (2018)

DOI

6
Coppin, P., Hodgkinson, T.G.: Novel optical frequency comb synthesis using optical feedback. Electron. Lett. 26(1), 28–30 (1990)

DOI

7
Newbury, N.R.: Searching for applications with a fine-tooth comb. Nat. Photonics 5(4), 186–188 (2011)

DOI

8
Ideguchi, T., Holzner, S., Bernhardt, B., Guelachvili, G., Picqué, N.,, Hänsch, T.W.: Coherent Raman spectro-imaging with laser frequency combs. Nature 502(7471), 355–358 (2013)

DOI

9
Coddington, I., Swann, W.C., Nenadovic, L., Newbury, N.R.: Rapid and precise absolute distance measurements at long range. Nat. Photonics 3(6), 351–356 (2009)

DOI

10
Hinkley, N., Sherman, J.A., Phillips, N.B., Schioppo, M., Lemke, N.D., Beloy, K., Pizzocaro, M., Oates, C.W., Ludlow, A.D.: An atomic clock with 10(-18) instability. Science 341(6151), 1215–1218 (2013)

DOI

11
Picqué, N.,, Hänsch, T.W.: Frequency comb spectroscopy. Nat. Photonics 13(3), 146–157 (2019)

DOI

12
Schliesser, A., Picqué, T.H.N., Hänsch, T.W.: Mid-infrared frequency combs. Nat. Photonics 6(7), 440–449 (2012)

DOI

13
Atutov, S.N., Bonazzi, F., Calabrese, R., Guidi, V., Lenisa, P., Petruio, S., Mariotti, E., Moi, L.: Generation of a frequency comb with a sharp edge of adjustable intensity and frequency. Opt. Commun. 132(3–4), 269–274 (1996)

DOI

14
Martín-Mateos, P., Jerez, B., Acedo, P.: Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy. Opt. Express 23(16), 21149–21158 (2015)

DOI

15
Martín-Mateos, P., Jerez, B., Largo-Izquierdo, P., Acedo, P.: Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time. Opt. Express 26(8), 9700–9713 (2018)

DOI

16
Tu, H., Xi, L., Zhang, X., Zhang, X., Lin, J., Meng, W.: Analysis of the performance of optical frequency comb based on recirculating frequency shifter influenced by an Er-doped fiber amplifier. Photonics Res. 1(2), 88–91 (2013)

DOI

17
Durán, V., Schnébelin, C., Guillet de Chatellus, H.: Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs. Opt. Express 26(11), 13800–13809 (2018)

DOI

18
Ding, Y., Wu, B., Shen, Y.: Acousto-optic frequency shifted comb laser-based micro-Doppler detection for moving target identification. J. Opt. Soc. Am. A 38(6), 844–854 (2021)

DOI

19
Billault, V., Durán, V., Fernández-Pousa, C.R., Crozatier, V., Dolfi, D., de Chatellus, H.G.: All-optical coherent pulse compression for dynamic laser ranging using an acousto-optic dual comb. Opt. Express 29(14), 21369–21385 (2021)

DOI

20
Durán, V., Chatellus, H., Schnebélin, C., Nithyanandan, K., Djevarhidjian, L., Clement, J., Fernández-Pousa, C.R.: Optical frequency combs generated by acousto-optic frequency-shifting loops. IEEE Photonics Technol. Lett. 31(23), 1878–1881 (2019)

DOI

21
Mantsevich, S.N., Voloshin, A.S., Yushkov, K.B.: Optical-frequency-comb generation with collinear acousto-optic diffraction: theory and simulations. Phys. Rev. A (Coll. Park) 100(1), 013829 (2019)

DOI

22
Mantsevich, S.N., Kupreychik, M.I., Balakshy, V.I.: Possibilities of wide-angle tellurium dioxide acousto-optic cell application for the optical frequency comb generation. Opt. Express 28(9), 13243–13259 (2020)

DOI

23
Mantsevich, S.N., Yushkov, K.B., Voloshin, A.S.: Optical frequency combs generation with collinear acousto-optic interaction. Proc. SPIE 11357, 142–150 (2020)

DOI

24
Mantsevich, S.N., Kostyleva, E.I.: Determination of the paratellurite stiffness constants temperature coefficients by the acousto-optic method. Materialia (Oxford) 21, 101340 (2022)

DOI

25
Yang, Z., Wen, M., Wan, L., Feng, T., Zhou, W., Liu, D., Zeng, S., Yang, S., Li, Z.: Efficient acousto-optic modulation using a microring resonator on a thin-film lithium niobate-chalcogenide hybrid platform. Opt. Lett. 47(15), 3808–3811 (2022)

DOI

26
Streifer, W., Whinnery, J.R.: Analysis of a dye laser tuned by acoustooptic filter. Appl. Phys. Lett. 17(8), 335–337 (1970)

DOI

27
Kowalski, F.V., Hale, P.D., Shattil, S.J.: Broadband continuouswave laser. Opt. Lett. 13(8), 622–624 (1988)

DOI

28
Littler, I.C.M., Balle, S., Bergmann, K.: Continuous-wave laser without frequency-domain-mode structure: investigation of emission properties and buildup dynamics. J. Opt. Soc. Am. B 8(7), 1412–1420 (1991)

DOI

29
Littler, I.C.M., Balle, S., Bergmann, K.: The CW modeless laser: spectral control, performance data and build-up dynamics. Opt. Commun. 88(4), 514–522 (1992)

DOI

30
Littler, I.C.M., Eschner, J.H.: The CW modeless laser: model calculations of an active frequency shifted feedback cavity. Opt. Commun. 87(1), 44–52 (1992)

DOI

31
Ogurtsov, V.V., Khodakovskyy, V.M., Yatsenko, L.P., Shore, B.W., Bonnet, G., Bergmann, K.: An all-fiber frequency-shifted feed-back laser for optical ranging; signal variation with distance. Opt. Commun. 281(6), 1679–1685 (2008)

DOI

32
Heidt, A.M., Burger, J.P., Maran, J.N., Traynor, N.: High power and high energy ultrashort pulse generation with a frequency shifted feedback fiber laser. Opt. Express 15(24), 15892–15897 (2007)

DOI

33
Okhotnikov, O.G.: Multiwavelength picosecond frequency-shifted feedback laser with pulse control by a shaped-gain fiber amplifier. Opt. Lett. 23(18), 1459–1461 (1998)

DOI

34
Nikodem, M.P., Kluźniak, E., Abramski, K.: Wavelength tunability and pulse duration control in frequency shifted feedback Er-doped fiber lasers. Opt. Express 17(5), 3299–3304 (2009)

DOI

35
Vazquez-Zuniga, L.A., Jeong, Y.: Study of a mode-locked erbiumdoped frequency-shifted-feedback fiber laser incorporating a broad bandpass filter: experimental results. Opt. Commun. 306, 1–8 (2013)

DOI

36
Vazquez-Zuniga, L.A., Jeong, Y.: Study of a mode-locked erbiumdoped frequency-shifted-feedback fiber laser incorporating a broad bandpass filter: numerical results. Opt. Commun. 322, 54–60 (2014)

DOI

37
Woodward, R.I., Majewski, M.R., Jackson, S.D.: Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30 μm. APL Photonics 3(11), 116106 (2018)

DOI

38
Henderson-Sapir, O., Bawden, N., Majewski, M.R., Woodward, R.I., Ottaway, D.J., Jackson, S.D.: Mode-locked and tunable fiber laser at the 3.5 μm band using frequency-shifted feedback. Opt. Lett. 45(1), 224–227 (2020)

DOI

39
Nikodem, M., Abramski, K.: Controlling the frequency of the frequency-shifted feedback fiber laser using injection-seeding technique. Opt. Commun. 283(10), 2202–2205 (2010)

DOI

40
Balle, S., Bergmann, K.: Self-pulsing and instabilities in a unidirectional ring dye laser with intracavity frequency shift. Opt. Commun. 116(1), 136–142 (1995)

DOI

41
Kim, J.I., Yatsenko, L.P., Bergmann, K.: Ranging with a frequency- shifted feedback laser using frequency-comb driven phase modulation of injected radiation. J. Phys. B 55(18), 184001 (2022)

DOI

42
Nakamura, K., Hara, T., Yoshida, M., Miyahara, T., Ito, H.: Optical frequency domain ranging by a frequency-shifted feedback laser. IEEE J. Quantum Electron. 36(3), 305–316 (2000)

DOI

43
Yatsenko, L.P., Shore, B.W., Bergmann, K.: Coherence in the out-put spectrum of frequency shifted feedback lasers. Opt. Commun. 282(2), 300–309 (2009)

DOI

44
Littler, I.C.M., Keller, H.M., Gaubatz, U., Bregmann, K.: Velocity control and cooling of an atomic beam using a modeless laser. Z. Phys. D 18(4), 307–308 (1991)

DOI

45
Cashen, M., Bretin, V., Metcalf, H.: Optical pumping in 4He* with frequency-shifted feedback amplification of light. J. Opt. Soc. Am. B 17(4), 530–533 (2000)

DOI

46
Yoshida, M., Nakamura, K., Ito, H.: A new method for measurement of group velocity dispersion of optical fibers by using a frequency-shifted feedback fiber laser. IEEE Photonics Technol. Lett. 13(3), 227–229 (2001)

DOI

47
Guillet de Chatellus, H., Jacquin, O., Hugon, O., Glastre, W., Lacot, E., Marklof, J.: Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers. Opt. Express 21(13), 15065–15074 (2013)

DOI

48
Yatsenko, L.P., Shore, B.W., Bergmann, K.: Theory of a frequency-shifted feedback laser. Opt. Commun. 236(1), 183–202 (2004)

DOI

49
Shore, K.A., Kane, D.M.: Comb generation bandwidth for frequency-shifted feedback semiconductor lasers. IEEE J. Quantum Electron. 35(7), 1053–1056 (1999)

DOI

50
Billault, V., Crozatier, V., Baili, G., Morvan, L., Dolfi, D., Chatellus, H.G.: Dynamic behavior of frequency combs in frequencyshifting loops. J. Opt. Soc. Am. B 37(6), 1812–1820 (2020)

DOI

51
Voloshinov, V.B.: Anisotropic light diffraction on ultrasound in a tellurium dioxide single crystal. Ultrasonics 31(5), 333–338 (1993)

DOI

52
Gao, Z., Mei, T.: Spectro-temporal evolution of mode-locked lasing in fiber frequency-shifted feedback laser. Opt. Lett. 47(19), 4973–4976 (2022)

DOI

53
Durán, V., Djevarhidjian, L., Guillet de Chatellus, H.: Bidirectional frequency-shifting loop for dual-comb spectroscopy. Opt. Lett. 44(15), 3789–3792 (2019)

DOI

54
Lucas, E., Lihachev, G., Bouchand, R., Pavlov, N.G., Raja, A.S., Karpov, M., Gorodetsky, M., Kippenberg, T.J.: Spatial multiplexing of soliton microcombs. Nat. Photonics 12(11), 699–705 (2018)

DOI

55
Sun, H., Lv, H., Wu, J., Hu, P., Fu, H., Yang, H., Yang, R., Ding, X.: Subringwavelength multidimensional multiplexing for quadcomb generation from an integrated dual-ring mode-locked laser. Proc. SPIE 12057, 120570 (2021)

DOI

56
Li, T., Zhao, X., Chen, J., Li, Q., Xie, S., Zheng, Z.: Tri-comb and quad-combgeneration based on a multi-dimensional multiplexed mode-locked laser. J. Lightwave Technol. 37(20), 5178–5184 (2019)

DOI

57
Yang, J., Liu, J., Li, T., Hu, J., Wang, J., Wu, Y., Xie, S., Zhao, X., Zheng, Z.: Dynamic spectroscopic characterization for fast spectral variations based on dual asynchronous undersampling with triple optical frequency combs. Opt. Lasers Eng. 156, 107077 (2022)

DOI

58
Lomsadze, B., Smith, B.C., Cundiff, S.T.: Tri-comb spectroscopy. Nat. Photonics 12(11), 676–680 (2018)

DOI

59
Coddington, I., Newbury, N., Swann, W.: Dual-comb spectroscopy. Optica 3(4), 414–426 (2016)

DOI

Outlines

/