Generation of dual and quad-optical frequency combs in the injected radiation free mode-locked frequency-shifted feedback laser
Received date: 27 Jun 2023
Accepted date: 27 Jul 2023
Copyright
The results of an optoelectronic system—frequency-shifted feedback (FSF) laser experimental examination are presented. The considered FSF laser is seeded only with optical amplifier spontaneous emission (ASE) and operates in the mode-locked regime, whereby the output radiation is sequence of short pulses with a repetition rate determined by the delay time in its optical feedback circuit. In the frequency domain, the spectrum of such a pulse sequence is an optical frequency comb (OFC). These OFCs we call initial. We consider the possibility of tunable acousto-optic (AO) dual and quad-comb frequency spacing downconversion in the FSF laser seeded with ASE and operating in the mode-locked regime. The examined system applies a single frequency shifting loop with single AO tunable filter as the frequency shifter that is fed with several radio frequency signals simultaneously. The initial OFCs with frequency spacing of about 6.5 MHz may be obtained in the wide spectral range and their width, envelope shape and position in the optical spectrum may be tuned. The dual-combs are obtained with a pair of initial OFCs aroused by two various ultrasound waves in the acousto-optic tunable filter (AOTF). The dual-combs frequency spacing is determined by the frequency difference of the signals applied to the AOTF piezoelectric transducer and can be tuned simply. The quad-combs are obtained with three initial OFCs, forming a pair of dual-combs, appearing when three ultrasound frequencies feed the AOTF transducer. The quad-combs frequency spacing is defined by the difference between the frequency spacing of dual-combs. Quad-combs with more than 5000 spectral lines and tunable frequency spacing are observed. The successive frequency downconversion gives the possibility to reduce the OFC frequency spacing form several MHz for initial OFC to tens of kHz for quad-combs.
Sergey N. Mantsevich , Ekaterina I. Kostyleva , Andrey N. Danilin , Vladimir S. Khorkin . Generation of dual and quad-optical frequency combs in the injected radiation free mode-locked frequency-shifted feedback laser[J]. Frontiers of Optoelectronics, 2023 , 16(3) : 21 . DOI: 10.1007/s12200-023-00079-y
1 |
Cundiff, S.T., Ye, J.: Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys. 75(1), 325–342 (2003)
|
2 |
Ohara, T., Takara, H., Yamamoto, T., Masuda, H., Morioka, T., Abe, M., Takahashi, H.: Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source. J. Lightwave Technol. 24(6), 2311–2317 (2006)
|
3 |
Del’Haye, P., Schliesser, A., Arcizet, O., Wilken, T., Holzwarth, R., Kippenberg, T.J.: Optical frequency comb generation from a monolithic microresonator. Nature 450(7173), 1214–1217 (2007)
|
4 |
Li, J., Qu, Y., Yu, R., Wu, Y.: Generation and control of optical frequency combs using cavity electromagnetically induced transparency. Phys. Rev. A (Coll. Park) 97(2), 023826 (2018)
|
5 |
Stefszky, M., Ulvila, V., Abdallah, Z., Silberhorn, C., Vainio, M.: Towards optical frequency-comb generation in continuous-wave-pumped titanium-indiffused lithium-niobate waveguide resonators. Phys. Rev. A (Coll. Park) 98(5), 053850 (2018)
|
6 |
Coppin, P., Hodgkinson, T.G.: Novel optical frequency comb synthesis using optical feedback. Electron. Lett. 26(1), 28–30 (1990)
|
7 |
Newbury, N.R.: Searching for applications with a fine-tooth comb. Nat. Photonics 5(4), 186–188 (2011)
|
8 |
Ideguchi, T., Holzner, S., Bernhardt, B., Guelachvili, G., Picqué, N.,, Hänsch, T.W.: Coherent Raman spectro-imaging with laser frequency combs. Nature 502(7471), 355–358 (2013)
|
9 |
Coddington, I., Swann, W.C., Nenadovic, L., Newbury, N.R.: Rapid and precise absolute distance measurements at long range. Nat. Photonics 3(6), 351–356 (2009)
|
10 |
Hinkley, N., Sherman, J.A., Phillips, N.B., Schioppo, M., Lemke, N.D., Beloy, K., Pizzocaro, M., Oates, C.W., Ludlow, A.D.: An atomic clock with 10(-18) instability. Science 341(6151), 1215–1218 (2013)
|
11 |
Picqué, N.,, Hänsch, T.W.: Frequency comb spectroscopy. Nat. Photonics 13(3), 146–157 (2019)
|
12 |
Schliesser, A., Picqué, T.H.N., Hänsch, T.W.: Mid-infrared frequency combs. Nat. Photonics 6(7), 440–449 (2012)
|
13 |
Atutov, S.N., Bonazzi, F., Calabrese, R., Guidi, V., Lenisa, P., Petruio, S., Mariotti, E., Moi, L.: Generation of a frequency comb with a sharp edge of adjustable intensity and frequency. Opt. Commun. 132(3–4), 269–274 (1996)
|
14 |
Martín-Mateos, P., Jerez, B., Acedo, P.: Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy. Opt. Express 23(16), 21149–21158 (2015)
|
15 |
Martín-Mateos, P., Jerez, B., Largo-Izquierdo, P., Acedo, P.: Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time. Opt. Express 26(8), 9700–9713 (2018)
|
16 |
Tu, H., Xi, L., Zhang, X., Zhang, X., Lin, J., Meng, W.: Analysis of the performance of optical frequency comb based on recirculating frequency shifter influenced by an Er-doped fiber amplifier. Photonics Res. 1(2), 88–91 (2013)
|
17 |
Durán, V., Schnébelin, C., Guillet de Chatellus, H.: Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs. Opt. Express 26(11), 13800–13809 (2018)
|
18 |
Ding, Y., Wu, B., Shen, Y.: Acousto-optic frequency shifted comb laser-based micro-Doppler detection for moving target identification. J. Opt. Soc. Am. A 38(6), 844–854 (2021)
|
19 |
Billault, V., Durán, V., Fernández-Pousa, C.R., Crozatier, V., Dolfi, D., de Chatellus, H.G.: All-optical coherent pulse compression for dynamic laser ranging using an acousto-optic dual comb. Opt. Express 29(14), 21369–21385 (2021)
|
20 |
Durán, V., Chatellus, H., Schnebélin, C., Nithyanandan, K., Djevarhidjian, L., Clement, J., Fernández-Pousa, C.R.: Optical frequency combs generated by acousto-optic frequency-shifting loops. IEEE Photonics Technol. Lett. 31(23), 1878–1881 (2019)
|
21 |
Mantsevich, S.N., Voloshin, A.S., Yushkov, K.B.: Optical-frequency-comb generation with collinear acousto-optic diffraction: theory and simulations. Phys. Rev. A (Coll. Park) 100(1), 013829 (2019)
|
22 |
Mantsevich, S.N., Kupreychik, M.I., Balakshy, V.I.: Possibilities of wide-angle tellurium dioxide acousto-optic cell application for the optical frequency comb generation. Opt. Express 28(9), 13243–13259 (2020)
|
23 |
Mantsevich, S.N., Yushkov, K.B., Voloshin, A.S.: Optical frequency combs generation with collinear acousto-optic interaction. Proc. SPIE 11357, 142–150 (2020)
|
24 |
Mantsevich, S.N., Kostyleva, E.I.: Determination of the paratellurite stiffness constants temperature coefficients by the acousto-optic method. Materialia (Oxford) 21, 101340 (2022)
|
25 |
Yang, Z., Wen, M., Wan, L., Feng, T., Zhou, W., Liu, D., Zeng, S., Yang, S., Li, Z.: Efficient acousto-optic modulation using a microring resonator on a thin-film lithium niobate-chalcogenide hybrid platform. Opt. Lett. 47(15), 3808–3811 (2022)
|
26 |
Streifer, W., Whinnery, J.R.: Analysis of a dye laser tuned by acoustooptic filter. Appl. Phys. Lett. 17(8), 335–337 (1970)
|
27 |
Kowalski, F.V., Hale, P.D., Shattil, S.J.: Broadband continuouswave laser. Opt. Lett. 13(8), 622–624 (1988)
|
28 |
Littler, I.C.M., Balle, S., Bergmann, K.: Continuous-wave laser without frequency-domain-mode structure: investigation of emission properties and buildup dynamics. J. Opt. Soc. Am. B 8(7), 1412–1420 (1991)
|
29 |
Littler, I.C.M., Balle, S., Bergmann, K.: The CW modeless laser: spectral control, performance data and build-up dynamics. Opt. Commun. 88(4), 514–522 (1992)
|
30 |
Littler, I.C.M., Eschner, J.H.: The CW modeless laser: model calculations of an active frequency shifted feedback cavity. Opt. Commun. 87(1), 44–52 (1992)
|
31 |
Ogurtsov, V.V., Khodakovskyy, V.M., Yatsenko, L.P., Shore, B.W., Bonnet, G., Bergmann, K.: An all-fiber frequency-shifted feed-back laser for optical ranging; signal variation with distance. Opt. Commun. 281(6), 1679–1685 (2008)
|
32 |
Heidt, A.M., Burger, J.P., Maran, J.N., Traynor, N.: High power and high energy ultrashort pulse generation with a frequency shifted feedback fiber laser. Opt. Express 15(24), 15892–15897 (2007)
|
33 |
Okhotnikov, O.G.: Multiwavelength picosecond frequency-shifted feedback laser with pulse control by a shaped-gain fiber amplifier. Opt. Lett. 23(18), 1459–1461 (1998)
|
34 |
Nikodem, M.P., Kluźniak, E., Abramski, K.: Wavelength tunability and pulse duration control in frequency shifted feedback Er-doped fiber lasers. Opt. Express 17(5), 3299–3304 (2009)
|
35 |
Vazquez-Zuniga, L.A., Jeong, Y.: Study of a mode-locked erbiumdoped frequency-shifted-feedback fiber laser incorporating a broad bandpass filter: experimental results. Opt. Commun. 306, 1–8 (2013)
|
36 |
Vazquez-Zuniga, L.A., Jeong, Y.: Study of a mode-locked erbiumdoped frequency-shifted-feedback fiber laser incorporating a broad bandpass filter: numerical results. Opt. Commun. 322, 54–60 (2014)
|
37 |
Woodward, R.I., Majewski, M.R., Jackson, S.D.: Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30 μm. APL Photonics 3(11), 116106 (2018)
|
38 |
Henderson-Sapir, O., Bawden, N., Majewski, M.R., Woodward, R.I., Ottaway, D.J., Jackson, S.D.: Mode-locked and tunable fiber laser at the 3.5 μm band using frequency-shifted feedback. Opt. Lett. 45(1), 224–227 (2020)
|
39 |
Nikodem, M., Abramski, K.: Controlling the frequency of the frequency-shifted feedback fiber laser using injection-seeding technique. Opt. Commun. 283(10), 2202–2205 (2010)
|
40 |
Balle, S., Bergmann, K.: Self-pulsing and instabilities in a unidirectional ring dye laser with intracavity frequency shift. Opt. Commun. 116(1), 136–142 (1995)
|
41 |
Kim, J.I., Yatsenko, L.P., Bergmann, K.: Ranging with a frequency- shifted feedback laser using frequency-comb driven phase modulation of injected radiation. J. Phys. B 55(18), 184001 (2022)
|
42 |
Nakamura, K., Hara, T., Yoshida, M., Miyahara, T., Ito, H.: Optical frequency domain ranging by a frequency-shifted feedback laser. IEEE J. Quantum Electron. 36(3), 305–316 (2000)
|
43 |
Yatsenko, L.P., Shore, B.W., Bergmann, K.: Coherence in the out-put spectrum of frequency shifted feedback lasers. Opt. Commun. 282(2), 300–309 (2009)
|
44 |
Littler, I.C.M., Keller, H.M., Gaubatz, U., Bregmann, K.: Velocity control and cooling of an atomic beam using a modeless laser. Z. Phys. D 18(4), 307–308 (1991)
|
45 |
Cashen, M., Bretin, V., Metcalf, H.: Optical pumping in 4He* with frequency-shifted feedback amplification of light. J. Opt. Soc. Am. B 17(4), 530–533 (2000)
|
46 |
Yoshida, M., Nakamura, K., Ito, H.: A new method for measurement of group velocity dispersion of optical fibers by using a frequency-shifted feedback fiber laser. IEEE Photonics Technol. Lett. 13(3), 227–229 (2001)
|
47 |
Guillet de Chatellus, H., Jacquin, O., Hugon, O., Glastre, W., Lacot, E., Marklof, J.: Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers. Opt. Express 21(13), 15065–15074 (2013)
|
48 |
Yatsenko, L.P., Shore, B.W., Bergmann, K.: Theory of a frequency-shifted feedback laser. Opt. Commun. 236(1), 183–202 (2004)
|
49 |
Shore, K.A., Kane, D.M.: Comb generation bandwidth for frequency-shifted feedback semiconductor lasers. IEEE J. Quantum Electron. 35(7), 1053–1056 (1999)
|
50 |
Billault, V., Crozatier, V., Baili, G., Morvan, L., Dolfi, D., Chatellus, H.G.: Dynamic behavior of frequency combs in frequencyshifting loops. J. Opt. Soc. Am. B 37(6), 1812–1820 (2020)
|
51 |
Voloshinov, V.B.: Anisotropic light diffraction on ultrasound in a tellurium dioxide single crystal. Ultrasonics 31(5), 333–338 (1993)
|
52 |
Gao, Z., Mei, T.: Spectro-temporal evolution of mode-locked lasing in fiber frequency-shifted feedback laser. Opt. Lett. 47(19), 4973–4976 (2022)
|
53 |
Durán, V., Djevarhidjian, L., Guillet de Chatellus, H.: Bidirectional frequency-shifting loop for dual-comb spectroscopy. Opt. Lett. 44(15), 3789–3792 (2019)
|
54 |
Lucas, E., Lihachev, G., Bouchand, R., Pavlov, N.G., Raja, A.S., Karpov, M., Gorodetsky, M., Kippenberg, T.J.: Spatial multiplexing of soliton microcombs. Nat. Photonics 12(11), 699–705 (2018)
|
55 |
Sun, H., Lv, H., Wu, J., Hu, P., Fu, H., Yang, H., Yang, R., Ding, X.: Subringwavelength multidimensional multiplexing for quadcomb generation from an integrated dual-ring mode-locked laser. Proc. SPIE 12057, 120570 (2021)
|
56 |
Li, T., Zhao, X., Chen, J., Li, Q., Xie, S., Zheng, Z.: Tri-comb and quad-combgeneration based on a multi-dimensional multiplexed mode-locked laser. J. Lightwave Technol. 37(20), 5178–5184 (2019)
|
57 |
Yang, J., Liu, J., Li, T., Hu, J., Wang, J., Wu, Y., Xie, S., Zhao, X., Zheng, Z.: Dynamic spectroscopic characterization for fast spectral variations based on dual asynchronous undersampling with triple optical frequency combs. Opt. Lasers Eng. 156, 107077 (2022)
|
58 |
Lomsadze, B., Smith, B.C., Cundiff, S.T.: Tri-comb spectroscopy. Nat. Photonics 12(11), 676–680 (2018)
|
59 |
Coddington, I., Newbury, N., Swann, W.: Dual-comb spectroscopy. Optica 3(4), 414–426 (2016)
|
/
〈 | 〉 |