RESEARCH ARTICLE

Massive and parallel 10 Tbit/s physical random bit generation with chaotic microcomb

  • Yuqi Hu 1,2 ,
  • Qingsong Bai 2 ,
  • Xi Tang 3 ,
  • Wei Xiong 3 ,
  • Yilu Wu 1 ,
  • Xin Zhang 3 ,
  • Yanlan Xiao 4 ,
  • Runchang Du 2 ,
  • Leiji Liu 2 ,
  • Guangqiong Xia 3 ,
  • Zhengmao Wu 3 ,
  • Junbo Yang , 5 ,
  • Heng Zhou , 4 ,
  • Jiagui Wu , 3
Expand
  • 1. College of Artificial Intelligence, Southwest University, Chongqing 400715, China
  • 2. Chengdu Spaceon Electronics Corporation Ltd., Chengdu 610037, China
  • 3. School of Physical Science and Technology, Southwest University, Chongqing 400715, China
  • 4. Key Lab of Optical Fiber Sensing and Communication Networks, University of Electronic Science and Technology of China, Chengdu 611731, China
  • 5. Center of Material Science, National University of Defense Technology, Changsha 410073, China
yangjunbo@nudt.edu.cn
zhouheng@uestc.edu.cn
mgh@swu.edu.cn

Received date: 15 Jun 2023

Accepted date: 03 Aug 2023

Copyright

2023 The Author(s) 2023

Abstract

Ultrafast physical random bit (PRB) generators and integrated schemes have proven to be valuable in a broad range of scientific and technological applications. In this study, we experimentally demonstrated a PRB scheme with a chaotic microcomb using a chip-scale integrated resonator. A microcomb contained hundreds of chaotic channels, and each comb tooth functioned as an entropy source for the PRB. First, a 12 Gbits/s PRB signal was obtained for each tooth channel with proper post-processing and passed the NIST Special Publication 800-22 statistical tests. The chaotic microcomb covered a wavelength range from 1430 to 1675 nm with a free spectral range (FSR) of 100 GHz. Consequently, the combined random bit sequence could achieve an ultra-high rate of about 4 Tbits/s (12 Gbits/s × 294 = 3.528 Tbits/s), with 294 teeth in the experimental microcomb. Additionally, denser microcombs were experimentally realized using an integrated resonator with 33.6 GHz FSR. A total of 805 chaotic comb teeth were observed and covered the wavelength range from 1430 to 1670 nm. In each tooth channel, 12 Gbits/s random sequences was generated, which passed the NIST test. Consequently, the total rate of the PRB was approximately 10 Tbits/s (12 Gbits/s × 805 = 9.66 Tbits/s). These results could offer potential chip solutions of Pbits/s PRB with the features of low cost and a high degree of parallelism.

Cite this article

Yuqi Hu , Qingsong Bai , Xi Tang , Wei Xiong , Yilu Wu , Xin Zhang , Yanlan Xiao , Runchang Du , Leiji Liu , Guangqiong Xia , Zhengmao Wu , Junbo Yang , Heng Zhou , Jiagui Wu . Massive and parallel 10 Tbit/s physical random bit generation with chaotic microcomb[J]. Frontiers of Optoelectronics, 2023 , 16(3) : 24 . DOI: 10.1007/s12200-023-00081-4

1
Uchida, A., Amano, K., Inoue, M., Hirano, K., Naito, S., Someya, H., Oowada, I., Kurashige, T., Shiki, M., Yoshimori, S., Yoshimura, K., Davis, P.: Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics 2(12), 728–732 (2008)

DOI

2
Reidler, I., Aviad, Y., Rosenbluh, M., Kanter, I.: Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett. 103(2), 024102 (2009)

DOI

3
Hirano, K., Yamazaki, T., Morikatsu, S., Okumura, H., Aida, H., Uchida, A., Yoshimori, S., Yoshimura, K., Harayama, T., Davis, P.: Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. Opt. Express 18(6), 5512–5524 (2010)

DOI

4
Sakuraba, R., Iwakawa, K., Kanno, K., Uchida, A.: Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers. Opt. Express 23(2), 1470–1490 (2015)

DOI

5
Zhang, L., Pan, B., Chen, G., Guo, L., Lu, D., Zhao, L., Wang, W.: 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser. Sci. Rep. 7(1), 1–8 (2017)

DOI

6
Wang, L., Zhao, T., Wang, D., Wu, D., Zhou, L., Wu, J., Liu, X., Wang, Y., Wang, A.: Real-time 14-Gbps physical random bit generator based on time-interleaved sampling of broadband white chaos. IEEE Photonics J. 9(2), 1–13 (2017)

DOI

7
Li, X.Z., Chan, S.C.: Heterodyne random bit generation using an optically injected semiconductor laser in chaos. IEEE J. Quantum Electron. 49(10), 829–838 (2013)

DOI

8
Wu, J.G., Tang, X., Wu, Z.M., Xia, G.Q., Feng, G.Y.: Parallel generation of 10 Gbits/s physical random number streams using chaotic semiconductor lasers. Laser Phys. 22(10), 1476–1480 (2012)

DOI

9
Tang, X., Wu, Z.M., Wu, J.G., Deng, T., Chen, J.J., Fan, L., Zhong, Z., Xia, G.Q.: Tbits/s physical random bit generation based on mutually coupled semiconductor laser chaotic entropy source. Opt. Express 23(26), 33130–33141 (2015)

DOI

10
Tang, X., Wu, Z.M., Wu, J.G., Deng, T., Fan, L., Zhong, Z.Q., Chen, J., Xia, G.Q.: Generation of multi-channel high-speed physical random numbers originated from two chaotic signals of mutually coupled semiconductor lasers. Laser Phys. Lett. 12(1), 015003 (2015)

DOI

11
Ran, C., Tang, X., Wu, Z.M., Xia, G.Q.: Dual-channel physical random bits generation by a master-slave vertical-cavity surface-emitting lasers chaotic system. Laser Phys. 28(12), 126202 (2018)

DOI

12
Tang, X., Xia, G.Q., Jayaprasath, E., Deng, T., Lin, X.D., Fan, L., Gao, Z., Wu, Z.M.: Multi-channel physical random bits generation using a vertical-cavity surface-emitting laser under chaotic optical injection. IEEE Access 6, 3565–3572 (2018)

DOI

13
Shi, B., Luo, C., Flores, J.G.F., Lo, G., Kwong, D.L., Wu, J., Wong, C.W.: Gbps physical random bit generation based on the mesoscopic chaos of a silicon photonics crystal microcavity. Opt. Express 28(24), 36685–36695 (2020)

DOI

14
Virte, M., Mercier, E., Thienpont, H., Panajotov, K., Sciamanna, M.: Physical random bit generation from chaotic solitary laser diode. Opt. Express 22(14), 17271–17280 (2014)

DOI

15
Tang, X., Xia, G.Q., Ran, C., Deng, T., Lin, X.D., Fan, L., Gao, Z., Lin, G.R., Wu, Z.M.: Fast physical random bit generation based on a broadband chaotic entropy source originated from a filtered feedback WRC-FPLD. IEEE Photonics J. 11(2), 1–10 (2019)

DOI

16
Wu, J.G., Wu, Z.M., Deng, T., Tang, X., Fan, L., Xie, Y.Y., Xia, G.Q.: 0.5 Gbits/s message bidirectional encryption and decryption based on two synchronized chaotic semiconductor lasers. In: Semiconductor Lasers and Applications V, vol. 8552, pp. 120–126. SPIE (2012)

DOI

17
Tang, X., Wu, J.G., Xia, G.Q., Wu, Z.M.: 17.5 Gbit/s random bit generation using chaotic output signal of mutually coupled semiconductor lasers. Wuli Xuebao 60(11), 110509 (2011)

DOI

18
Luo, C., Flores, J.G., Shi, B., Yu, M., Lo, G., Kwong, D.L., Wu, J., Wong, C.W.: Gb/s physical random bits through mesoscopic chaos in integrated silicon optomechanical cavities. In: CLEO: QELS_Fundamental Science, vol. 5, pp. FTu4C. Optica Publishing Group (2019)

DOI

19
Zhao, A., Jiang, N., Wang, Y., Liu, S., Xue, C., Qiu, K.: Fast physical random bit generation using broadband chaos generated by self-phase-modulated external-cavity semiconductor laser cascaded with microsphere resonator. In: CLEO: Science and Innovations, vol. 73, pp. JTu2A. Optical Society of America (2019)

DOI

20
Brasch, V., Geiselmann, M., Herr, T., Lihachev, G., Pfeiffer, M.H., Gorodetsky, M.L., Kippenberg, T.J.: Photonic chip based optical frequency comb using soliton induced Cherenkov radiation. In: 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (2015)

DOI

21
Johnson, A.R., Mayer, A.S., Klenner, A., Luke, K., Lamb, E.S., Lamont, M.R., Joshi, C., Okawachi, F., Wise, W., Lipson, M., Keller, U., Gaeta, A.L.: Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Opt. Lett. 40(21), 5117–5120 (2015)

DOI

22
Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135–1184 (2006)

DOI

23
Peccianti, M., Pasquazi, A., Park, Y., Little, B.E., Chu, S.T., Moss, D.J., Morandotti, R.: Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nat. Commun. 3(1), 765 (2012)

DOI

24
Kippenberg, T.J., Gaeta, A.L., Lipson, M., Gorodetsky, M.L.: Dissipative Kerr solitons in optical microresonators. Science 361(6402), eaan8083 (2018)

DOI

25
Joshi, C., Jang, J.K., Luke, K., Ji, X., Miller, S.A., Klenner, A., Okawachi, Y., Lipson, M., Gaeta, A.L.: Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41(11), 2565–2568 (2016)

DOI

26
Obrzud, E., Lecomte, S., Herr, T.: Temporal solitons in microresonators driven by optical pulses. Nat. Photonics 11(9), 600–607 (2017)

DOI

27
Chen, R., Shu, H., Shen, B., Chang, L., Xie, W., Liao, W., Tao, Z., Bowers, J., Wang, X.: Breaking the temporal and frequency congestion of LiDAR by parallel chaos. Nat. Photonics 17(4), 306–314 (2023)

DOI

28
Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, Revision 1a. NIST Special Publication, pp. 800–822. US Department of Commerce, Technology Administration, National Institute of Standards and Technology, Washington, D.C (2010)

29
Kanter, I., Aviad, Y., Reidler, I., Cohen, E., Rosenbluh, M.: An optical ultrafast random bit generator. Nat. Photonics 4(1), 58–61 (2010)

DOI

30
Li, X.Z., Chan, S.C.: Random bit generation using an optically injected semiconductor laser in chaos with oversampling. Opt. Lett. 37(11), 2163–2165 (2012)

DOI

31
Butler, T., Durkan, C., Goulding, D., Slepneva, S., Kelleher, B., Hegarty, S.P., Huyet, G.: Optical ultrafast random number generation at 1 Tb/s using a turbulent semiconductor ring cavity laser. Opt. Lett. 41(2), 388–391 (2016)

DOI

32
Kou, J.Q., Shen, C.C., Shao, H., Che, J., Hou, X., Chu, C.S., Tian, K.K., Zhang, Y.H., Zhang, Z.H., Kuo, H.C.: Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes. Opt. Express 27(12), A643–A653 (2019)

DOI

33
Xiao, Z.Y., Li, T., Cai, M., Zhang, H., Huang, Y., Li, C., Yao, B., Wu, K., Chen, J.: Near-zero-dispersion soliton and broadband modulational instability Kerr microcombs in anomalous dispersion. Light Sci. Appl. 12(1), 33 (2023)

DOI

34
Chang, L., Liu, S., Bowers, J.E.: Integrated optical frequency comb technologies. Nat. Photonics 16(2), 95–108 (2022)

DOI

35
Zhang, H., Tan, T., Chen, H.J., Yu, Y., Wang, W., Chang, B., Liang, Y., Guo, Y., Zhou, H., Xia, H., Gong, Q., Wong, C., Rao, Y., Xiao, Y.F., Yao, B.: Soliton microcombs multiplexing using intracavity-stimulated Brillouin lasers. Phys. Rev. Lett. 130(15), 153802 (2023)

DOI

36
Tan, T., Yuan, Z., Zhang, H., Yan, G., Zhou, S., An, N., Peng, B., Soavi, G., Rao, Y., Yao, B.: Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nat. Commun. 12(1), 6716 (2021)

DOI

37
Guo, H., Karpov, M., Lucas, E., Kordts, A., Pfeiffer, M.H.P., Brasch, V., Lihachev, G., Lobanov, V.E., Gorodetsky, M.L., Kippenberg, T.J.: Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13(1), 94–102 (2017)

DOI

38
Herr, T., Brasch, V., Jost, J.D., Mirgorodskiy, I., Lihachev, G., Gorodetsky, M.L., Kippenberg, T.J.: Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113(12), 123901 (2014)

DOI

39
Qin, C., Du, J., Tan, T., Chang, B., Jia, K., Liang, Y., Wang, W., Guo, Y., Xia, H., Zhu, S., Rao, Y., Xie, Z., Yao, B.: Co-generation of orthogonal soliton pair in a monolithic fiber resonator with mechanical tunability. Laser Photonics Rev. 17(4), 2200662 (2023)

DOI

Outlines

/