Massive and parallel 10 Tbit/s physical random bit generation with chaotic microcomb
Received date: 15 Jun 2023
Accepted date: 03 Aug 2023
Copyright
Ultrafast physical random bit (PRB) generators and integrated schemes have proven to be valuable in a broad range of scientific and technological applications. In this study, we experimentally demonstrated a PRB scheme with a chaotic microcomb using a chip-scale integrated resonator. A microcomb contained hundreds of chaotic channels, and each comb tooth functioned as an entropy source for the PRB. First, a 12 Gbits/s PRB signal was obtained for each tooth channel with proper post-processing and passed the NIST Special Publication 800-22 statistical tests. The chaotic microcomb covered a wavelength range from 1430 to 1675 nm with a free spectral range (FSR) of 100 GHz. Consequently, the combined random bit sequence could achieve an ultra-high rate of about 4 Tbits/s (12 Gbits/s × 294 = 3.528 Tbits/s), with 294 teeth in the experimental microcomb. Additionally, denser microcombs were experimentally realized using an integrated resonator with 33.6 GHz FSR. A total of 805 chaotic comb teeth were observed and covered the wavelength range from 1430 to 1670 nm. In each tooth channel, 12 Gbits/s random sequences was generated, which passed the NIST test. Consequently, the total rate of the PRB was approximately 10 Tbits/s (12 Gbits/s × 805 = 9.66 Tbits/s). These results could offer potential chip solutions of Pbits/s PRB with the features of low cost and a high degree of parallelism.
Key words: Physical random bit; Chaos; Microcomb
Yuqi Hu , Qingsong Bai , Xi Tang , Wei Xiong , Yilu Wu , Xin Zhang , Yanlan Xiao , Runchang Du , Leiji Liu , Guangqiong Xia , Zhengmao Wu , Junbo Yang , Heng Zhou , Jiagui Wu . Massive and parallel 10 Tbit/s physical random bit generation with chaotic microcomb[J]. Frontiers of Optoelectronics, 2023 , 16(3) : 24 . DOI: 10.1007/s12200-023-00081-4
1 |
Uchida, A., Amano, K., Inoue, M., Hirano, K., Naito, S., Someya, H., Oowada, I., Kurashige, T., Shiki, M., Yoshimori, S., Yoshimura, K., Davis, P.: Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics 2(12), 728–732 (2008)
|
2 |
Reidler, I., Aviad, Y., Rosenbluh, M., Kanter, I.: Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett. 103(2), 024102 (2009)
|
3 |
Hirano, K., Yamazaki, T., Morikatsu, S., Okumura, H., Aida, H., Uchida, A., Yoshimori, S., Yoshimura, K., Harayama, T., Davis, P.: Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. Opt. Express 18(6), 5512–5524 (2010)
|
4 |
Sakuraba, R., Iwakawa, K., Kanno, K., Uchida, A.: Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers. Opt. Express 23(2), 1470–1490 (2015)
|
5 |
Zhang, L., Pan, B., Chen, G., Guo, L., Lu, D., Zhao, L., Wang, W.: 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser. Sci. Rep. 7(1), 1–8 (2017)
|
6 |
Wang, L., Zhao, T., Wang, D., Wu, D., Zhou, L., Wu, J., Liu, X., Wang, Y., Wang, A.: Real-time 14-Gbps physical random bit generator based on time-interleaved sampling of broadband white chaos. IEEE Photonics J. 9(2), 1–13 (2017)
|
7 |
Li, X.Z., Chan, S.C.: Heterodyne random bit generation using an optically injected semiconductor laser in chaos. IEEE J. Quantum Electron. 49(10), 829–838 (2013)
|
8 |
Wu, J.G., Tang, X., Wu, Z.M., Xia, G.Q., Feng, G.Y.: Parallel generation of 10 Gbits/s physical random number streams using chaotic semiconductor lasers. Laser Phys. 22(10), 1476–1480 (2012)
|
9 |
Tang, X., Wu, Z.M., Wu, J.G., Deng, T., Chen, J.J., Fan, L., Zhong, Z., Xia, G.Q.: Tbits/s physical random bit generation based on mutually coupled semiconductor laser chaotic entropy source. Opt. Express 23(26), 33130–33141 (2015)
|
10 |
Tang, X., Wu, Z.M., Wu, J.G., Deng, T., Fan, L., Zhong, Z.Q., Chen, J., Xia, G.Q.: Generation of multi-channel high-speed physical random numbers originated from two chaotic signals of mutually coupled semiconductor lasers. Laser Phys. Lett. 12(1), 015003 (2015)
|
11 |
Ran, C., Tang, X., Wu, Z.M., Xia, G.Q.: Dual-channel physical random bits generation by a master-slave vertical-cavity surface-emitting lasers chaotic system. Laser Phys. 28(12), 126202 (2018)
|
12 |
Tang, X., Xia, G.Q., Jayaprasath, E., Deng, T., Lin, X.D., Fan, L., Gao, Z., Wu, Z.M.: Multi-channel physical random bits generation using a vertical-cavity surface-emitting laser under chaotic optical injection. IEEE Access 6, 3565–3572 (2018)
|
13 |
Shi, B., Luo, C., Flores, J.G.F., Lo, G., Kwong, D.L., Wu, J., Wong, C.W.: Gbps physical random bit generation based on the mesoscopic chaos of a silicon photonics crystal microcavity. Opt. Express 28(24), 36685–36695 (2020)
|
14 |
Virte, M., Mercier, E., Thienpont, H., Panajotov, K., Sciamanna, M.: Physical random bit generation from chaotic solitary laser diode. Opt. Express 22(14), 17271–17280 (2014)
|
15 |
Tang, X., Xia, G.Q., Ran, C., Deng, T., Lin, X.D., Fan, L., Gao, Z., Lin, G.R., Wu, Z.M.: Fast physical random bit generation based on a broadband chaotic entropy source originated from a filtered feedback WRC-FPLD. IEEE Photonics J. 11(2), 1–10 (2019)
|
16 |
Wu, J.G., Wu, Z.M., Deng, T., Tang, X., Fan, L., Xie, Y.Y., Xia, G.Q.: 0.5 Gbits/s message bidirectional encryption and decryption based on two synchronized chaotic semiconductor lasers. In: Semiconductor Lasers and Applications V, vol. 8552, pp. 120–126. SPIE (2012)
|
17 |
Tang, X., Wu, J.G., Xia, G.Q., Wu, Z.M.: 17.5 Gbit/s random bit generation using chaotic output signal of mutually coupled semiconductor lasers. Wuli Xuebao 60(11), 110509 (2011)
|
18 |
Luo, C., Flores, J.G., Shi, B., Yu, M., Lo, G., Kwong, D.L., Wu, J., Wong, C.W.: Gb/s physical random bits through mesoscopic chaos in integrated silicon optomechanical cavities. In: CLEO: QELS_Fundamental Science, vol. 5, pp. FTu4C. Optica Publishing Group (2019)
|
19 |
Zhao, A., Jiang, N., Wang, Y., Liu, S., Xue, C., Qiu, K.: Fast physical random bit generation using broadband chaos generated by self-phase-modulated external-cavity semiconductor laser cascaded with microsphere resonator. In: CLEO: Science and Innovations, vol. 73, pp. JTu2A. Optical Society of America (2019)
|
20 |
Brasch, V., Geiselmann, M., Herr, T., Lihachev, G., Pfeiffer, M.H., Gorodetsky, M.L., Kippenberg, T.J.: Photonic chip based optical frequency comb using soliton induced Cherenkov radiation. In: 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (2015)
|
21 |
Johnson, A.R., Mayer, A.S., Klenner, A., Luke, K., Lamb, E.S., Lamont, M.R., Joshi, C., Okawachi, F., Wise, W., Lipson, M., Keller, U., Gaeta, A.L.: Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Opt. Lett. 40(21), 5117–5120 (2015)
|
22 |
Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135–1184 (2006)
|
23 |
Peccianti, M., Pasquazi, A., Park, Y., Little, B.E., Chu, S.T., Moss, D.J., Morandotti, R.: Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nat. Commun. 3(1), 765 (2012)
|
24 |
Kippenberg, T.J., Gaeta, A.L., Lipson, M., Gorodetsky, M.L.: Dissipative Kerr solitons in optical microresonators. Science 361(6402), eaan8083 (2018)
|
25 |
Joshi, C., Jang, J.K., Luke, K., Ji, X., Miller, S.A., Klenner, A., Okawachi, Y., Lipson, M., Gaeta, A.L.: Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41(11), 2565–2568 (2016)
|
26 |
Obrzud, E., Lecomte, S., Herr, T.: Temporal solitons in microresonators driven by optical pulses. Nat. Photonics 11(9), 600–607 (2017)
|
27 |
Chen, R., Shu, H., Shen, B., Chang, L., Xie, W., Liao, W., Tao, Z., Bowers, J., Wang, X.: Breaking the temporal and frequency congestion of LiDAR by parallel chaos. Nat. Photonics 17(4), 306–314 (2023)
|
28 |
Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, Revision 1a. NIST Special Publication, pp. 800–822. US Department of Commerce, Technology Administration, National Institute of Standards and Technology, Washington, D.C (2010)
|
29 |
Kanter, I., Aviad, Y., Reidler, I., Cohen, E., Rosenbluh, M.: An optical ultrafast random bit generator. Nat. Photonics 4(1), 58–61 (2010)
|
30 |
Li, X.Z., Chan, S.C.: Random bit generation using an optically injected semiconductor laser in chaos with oversampling. Opt. Lett. 37(11), 2163–2165 (2012)
|
31 |
Butler, T., Durkan, C., Goulding, D., Slepneva, S., Kelleher, B., Hegarty, S.P., Huyet, G.: Optical ultrafast random number generation at 1 Tb/s using a turbulent semiconductor ring cavity laser. Opt. Lett. 41(2), 388–391 (2016)
|
32 |
Kou, J.Q., Shen, C.C., Shao, H., Che, J., Hou, X., Chu, C.S., Tian, K.K., Zhang, Y.H., Zhang, Z.H., Kuo, H.C.: Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes. Opt. Express 27(12), A643–A653 (2019)
|
33 |
Xiao, Z.Y., Li, T., Cai, M., Zhang, H., Huang, Y., Li, C., Yao, B., Wu, K., Chen, J.: Near-zero-dispersion soliton and broadband modulational instability Kerr microcombs in anomalous dispersion. Light Sci. Appl. 12(1), 33 (2023)
|
34 |
Chang, L., Liu, S., Bowers, J.E.: Integrated optical frequency comb technologies. Nat. Photonics 16(2), 95–108 (2022)
|
35 |
Zhang, H., Tan, T., Chen, H.J., Yu, Y., Wang, W., Chang, B., Liang, Y., Guo, Y., Zhou, H., Xia, H., Gong, Q., Wong, C., Rao, Y., Xiao, Y.F., Yao, B.: Soliton microcombs multiplexing using intracavity-stimulated Brillouin lasers. Phys. Rev. Lett. 130(15), 153802 (2023)
|
36 |
Tan, T., Yuan, Z., Zhang, H., Yan, G., Zhou, S., An, N., Peng, B., Soavi, G., Rao, Y., Yao, B.: Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nat. Commun. 12(1), 6716 (2021)
|
37 |
Guo, H., Karpov, M., Lucas, E., Kordts, A., Pfeiffer, M.H.P., Brasch, V., Lihachev, G., Lobanov, V.E., Gorodetsky, M.L., Kippenberg, T.J.: Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13(1), 94–102 (2017)
|
38 |
Herr, T., Brasch, V., Jost, J.D., Mirgorodskiy, I., Lihachev, G., Gorodetsky, M.L., Kippenberg, T.J.: Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113(12), 123901 (2014)
|
39 |
Qin, C., Du, J., Tan, T., Chang, B., Jia, K., Liang, Y., Wang, W., Guo, Y., Xia, H., Zhu, S., Rao, Y., Xie, Z., Yao, B.: Co-generation of orthogonal soliton pair in a monolithic fiber resonator with mechanical tunability. Laser Photonics Rev. 17(4), 2200662 (2023)
|
/
〈 | 〉 |