Energy-efficient integrated silicon optical phased array
Received date: 17 Apr 2023
Accepted date: 20 Jun 2023
Published date: 15 Sep 2023
Copyright
An optical phased array (OPA) is a promising non-mechanical technique for beam steering in solid-state light detection and ranging systems. The performance of the OPA largely depends on the phase shifter, which affects power consumption, insertion loss, modulation speed, and footprint. However, for a thermo-optic phase shifter, achieving good performance in all aspects is challenging due to trade-offs among these aspects. In this work, we propose and demonstrate two types of energy-efficient optical phase shifters that overcome these trade-offs and achieve a well-balanced performance in all aspects. Additionally, the proposed round-spiral phase shifter is robust in fabrication and fully compatible with deep ultraviolet (DUV) processes, making it an ideal building block for large-scale photonic integrated circuits (PICs). Using the high-performance phase shifter, we propose a periodic OPA with low power consumption, whose maximum electric power consumption within the field of view is only 0.33 W. Moreover, we designed Gaussian power distribution in both the azimuthal (ϕ) and polar (θ) directions and experimentally achieved a large sidelobe suppression ratio of 15.1 and 25 dB, respectively.
Huaqing Qiu , Yong Liu , Xiansong Meng , Xiaowei Guan , Yunhong Ding , Hao Hu . Energy-efficient integrated silicon optical phased array[J]. Frontiers of Optoelectronics, 2023 , 16(3) : 23 . DOI: 10.1007/s12200-023-00076-1
1 |
Chakraborty,M., Khot,L.R., Sankaran,S., Jacoby, P.W.: Evaluation of mobile 3D light detection and ranging based canopy mapping system for tree fruit crops. Comput. Electron. Agric. 158, 284–293 (2019)
|
2 |
Collis,R.: Lidar. In: Advances in Geophysics vol. 13, pp. 113–139. Elsevier (1969)
|
3 |
Northend,C.A.: Lidar, a laser radar for meteorological studies. Naturwissenschaften 54, 77–80 (1967)
|
4 |
Reutebuch,S.E., Andersen, H.-E., McGaughey,R.J.: Light detection and ranging (lidar): an emerging tool for multiple resource inventory. J. Forest. 103(6), 286–292 (2005)
|
5 |
Kim,I., Martins, R.J., Jang,J., Badloe,T., Khadir, S., Jung,H.-Y., Kim,H., Kim,J., Genevet,P., Rho, J.: Nanophotonics for light detection and ranging technology. Nat. Nanotechnol. 16(5), 508–524 (2021)
|
6 |
Raj,T., Hanim Hashim, F., Baseri Huddin,A., Ibrahim,M.F., Hussain, A.: A survey on lidar scanning mechanisms. Electronics 9(5), 741 (2020)
|
7 |
Liu,J., Sun,Q., Fan,Z., Jia, Y.: Tof lidar development in autonomous vehicle. In: 2018 IEEE 3rd Optoelectronics Global Conference (OGC), pp. 185–190. IEEE (2018)
|
8 |
Wang,D., Watkins, C., Xie,H.: Mems mirrors for lidar: a review. Micromachines 11(5), 456 (2020)
|
9 |
McManamon,P.F., Banks,P., Beck,J., Fried, D.G., Huntington,A.S., Watson,E.A.: Comparison of flash lidar detector options. Opt. Eng. 56(3), 031223–031223 (2017)
|
10 |
Stettner,R.: Compact 3d flash lidar video cameras and applications. In: Laser Radar Technology and Applications XV, vol. 7684, pp. 39–46. SPIE (2010)
|
11 |
Yoo,H.W., Druml,N., Brunner,D., Schwarzl, C., Thurner,T., Hennecke,M., Schitter, G.: Mems-based lidar for autonomous driving. e & i Elektrotechnik und Informationstechnik (2018)
|
12 |
Takashima,Y., Hellman, B., Rodriguez,J., Chen,G., Smith,B., Gin,A., Espinoza, A., Winkler,P., Perl,C., Luo,C., et al.: Mems-based imaging lidar. In: Optics and Photonics for Energy and the Environment, pp. 4–1. Optica Publishing Group (2018)
|
13 |
Dong,L., Zhu,W., Zhao,Y., Liu, X., Zhang,J., Liu,W., Zhou,X.: A novel optical-mechanical scanning passive thz imaging system. In: 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves, pp. 1–2 IEEE (2012)
|
14 |
Hsu,C.-P., Li,B., Solano-Rivas,B., Gohil,A.R., Chan,P.H., Moore,A.D., Donzella, V.: A review and perspective on optical phased array for automotive lidar. IEEE J. Sel. Top. Quantum Electron. 27(1), 1–16 (2020)
|
15 |
Poulton,C.V., Yaacobi, A., Cole,D.B., Byrd,M.J., Raval,M., Vermeulen,D., Watts,M.R.: Coherent solid-state lidar with silicon photonic optical phased arrays. Opt. Lett. 42(20), 4091–4094 (2017)
|
16 |
Wang,Y., Wu,M.: An optical phased array for lidar. In: Journal of Physics: Conference Series, vol. 772, p. 012004. IOP Publishing (2016)
|
17 |
Heck,M.J.: Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics 6(1), 93–107 (2017)
|
18 |
Poulton,C.V., Byrd,M.J., Timurdogan,E., Russo,P., Vermeulen, D., Watts,M.R.: Optical phased arrays for integrated beam steering. In: 2018 IEEE 15th International Conference on Group IV Photonics (GFP), pp. 1–2, IEEE (2018)
|
19 |
Qiu,H., Dong,J., Liu,L., Zhang, X.: Energy-efficient on-chip optical diode based on the optomechanical effect. Opt. Express 25(8), 8975–8985 (2017)
|
20 |
Miller,S.A., Chang,Y.-C., Gordillo,O.A.J., et al.: Large-scale optical phased array using a low-power multi-pass silicon photonic platform. Optica 7(1), 3–6 (2020)
|
21 |
Kang,G., Kim,S.-H., You,J.-B., Lee, D.-S., Yoon,H., Ha,Y.-G., Kim,J.-H., Yoo,D.-E., Lee, D.-W., Youn,C.-H., et al.: Silicon-based optical phased array using electro-optic p-i-n phase shifters. IEEE Photonics Technol. Lett. 31(21), 1685–1688 (2019)
|
22 |
Tu,X., Liow,T.-Y., Song,J., Luo, X., Fang,Q., Yu,M., Lo,G.-Q.: 50-gb/s silicon optical modulator with traveling-wave electrodes. Opt. Express 21(10), 12776–12782 (2013)
|
23 |
Wang,Y., Zhou,G., Zhang,X., Kwon, K., Blanche,P.-A., Triesault,N., Yu,K.-S., Wu,M.C.: 2d broadband beamsteering with large-scale mems optical phased array. Optica 6(5), 557–562 (2019)
|
24 |
Jin,W., Polcawich, R.G., Morton,P.A., Bowers,J.E.: Piezoelectrically tuned silicon nitride ring resonator. Opt. Express 26(3), 3174–3187 (2018)
|
25 |
Chung,S., Nakai,M., Hashemi,H.: Low-power thermo-optic silicon modulator for large-scale photonic integrated systems. Opt. Express 27(9), 13430–13459 (2019)
|
26 |
Szelag,B., Fowler, D., Tyler,N.A., Grosse,P., Malhouitre, S., Garcia,S., Rabaud,W.: Sin integrated optical phased arrays for two-dimensional beam steering at a single near-infrared wave-length. Opt. Express 27(4), 5851–5858 (2019)
|
27 |
Wang,Q., Wang,Q., Wang,S., Wang, S., Jia,L., Cai,Y., Yue,W., Yu,M.: Silicon nitride assisted 1x64 optical phased array based on a SOI platform. Opt. Express 29(7), 10509–10517 (2021)
|
28 |
Van Acoleyen,K., Rogier, H., Baets,R., Kahn,J.M., Barry,J.R., Van Acoleyen,K., Bogaerts,W., Jágerská, J., Le Thomas,N., Houdré,R., Baets, R., McManamon,P.F., Dorschner,T.A., Corkum, D.L., Friedman,L.J., Hobbs,D.S., Holz,M., Liberman,S., Nguyen, H.Q., Resler,D.P., Sharp,R.C., Watson, E.A., Joshi,H., Higgins,M.D., Leeson, M.S.: Two-dimensional optical phased array antenna on silicon-on-insulator. Optics Express 18(13), 13655–13660 (2010)
|
29 |
Sun,J., Hosseini, E.S., Yaacobi,A., Cole,D.B., Coolbaugh, D., Leake,G., Watts,M.R.: Two-dimensional apodized silicon photonic phased arrays. Opt. Lett. 39(2), 367–370 (2014)
|
30 |
Phare,C.T., Shin,M.C., Miller,S.A., Stern, B., Lipson,M.: Silicon optical phased array with grating lobe-free beam formation over 180 degree field of view. CLEO: Science and Innovations, 3–2 (2018)
|
31 |
Sabouri,S., Jamshidi, K.: Design considerations of silicon nitride optical phased array for visible light communications. IEEE J. Sel. Top. Quantum Electron. 24(6) (2018)
|
32 |
Qin,C., Liu,G., Shang,K., Yoo, S.J.B., Feng,S., Xiao,X., Zhang,Y.: Uniform emission, constant wavevector silicon grating surface emitter for beam steering with ultra-sharp instantaneous field-of-view. Opt. Express 25(17), 19655–19661 (2017)
|
33 |
Hutchison,D.N., Sun,J., Doylend,J.K., Kumar,R., Heck,J., Kim,W., Phare, C.T., Feshali,A., Rong,H.: High-resolution aliasing-free optical beam steering. Optica 3(8), 887–890 (2016)
|
34 |
Chung,S., Abediasl, H., Hashemi,H.: A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS. IEEE J. Solid-State Circuits 53(1), 275–296 (2017)
|
35 |
Zhang,X., Kwon,K., Henriksson,J., Luo,J., Wu,M.C.: A large-scale microelectromechanical-systems-based silicon photonics lidar. Nature 603(7900), 253–258 (2022)
|
36 |
Xu,W., Guo,Y., Li,X., Liu, C., Lu,L., Chen,J., Zhou,L.: Fully integrated solid-state lidar transmitter on a multi-layer silicon-nitride-on-silicon photonic platform. J. Light. Technol. (2022)
|
37 |
Li,W., Chen,J., Liang,D., Dai, D., Shi,Y.: Silicon optical phased array with calibration-free phase shifters. Opt. Express 30(24), 44029–44038 (2022)
|
38 |
Li,Y., Chen,B., Na,Q., Xie, Q., Tao,M., Zhang,L., Zhi,Z., Li,Y., Liu, X., Luo,X., et al.: Wide-steering-angle high-resolution optical phased array. Photonics Res. 9(12), 2511–2518 (2021)
|
39 |
Poulton,C.V., Byrd,M.J., Russo,P., Moss, B., Shatrovoy,O., Khandaker,M., Watts,M.R.: Coherent lidar with an 8,192-element optical phased array and driving laser. IEEE J. Sel. Top Quantum Electron. 28(5: Lidars and Photonic Radars), 1–8 (2022)
|
40 |
Midkiff,J., Yoo,K.M., Shin,J.-D., Dalir, H., Teimourpour,M.H., Chen,R.: Optical phased array beam steering in the mid-infrared on an INP-based platform. Optica 7(11), 1544–1547 (2020)
|
41 |
Xie,W., Komljenovic, T., Huang,J., Tran,M., Davenport, M., Torres,A., Pintus,P., Bowers, J.: Heterogeneous silicon photonics sensing for autonomous cars. Opt. Express 27(3), 3642–3663 (2019)
|
42 |
Poulton,C.V., Byrd,M.J., Russo,P., Moss, B., Shatrovoy,O., Khandaker,M., Watts,M.R.: Coherent lidar with an 8,192-element optical phased array and driving laser. IEEE J. Sel. Top Quantum Electron. 28(5: Lidars and Photonic Radars), 1–8 (2022)
|
43 |
Epping,J.P., Marchenko, D., Leinse,A., Mateman,R., Hoekman, M., Wevers,L., Roeloffzen,C.G., Dekkers, M., Heideman,R.G.: Ultra-low-power stress-based integrated photonic phase actuator. Proc. Eur. Conf. Integr. Opt (2018)
|
44 |
Sun,J., Timurdogan, E., Yaacobi,A., Su,Z., Hosseini, E.S., Cole,D.B., Watts,M.R.: Large-scale silicon photonic circuits for optical phased arrays. IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2013)
|
45 |
Watts,M.R., Sun,J., DeRose,C., Trotter, D.C., Young,R.W., Nielson,G.N.: Adiabatic thermo-optic Mach-Zehnder switch. Opt. Lett. 38(5), 733–735 (2013)
|
46 |
Liu,Y., Hu,H.: Silicon optical phased array with a 180-degree field of view for 2D optical beam steering. Optica 9(8), 903–907 (2022)
|
47 |
Komma,J., Schwarz, C., Hofmann,G., Heinert,D., Nawrodt, R.: Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett. 101(4), 041905 (2012)
|
48 |
Frey,B.J., Leviton, D.B., Madison,T.J.: Temperature-dependent refractive index of silicon and germanium. In: Optomechanical Technologies for Astronomy, vol. 6273, pp. 790–799. SPIE (2006)
|
49 |
Espinola,R., Tsai,M., Yardley,J.T., Osgood,R.: Fast and low-power thermooptic switch on thin silicon-on-insulator. IEEE Photonics Technol. Lett. 15(10), 1366–1368 (2003)
|
50 |
Gu,L., Jiang,W., Chen,X., Chen, R.T.: Thermooptically tuned photonic crystal waveguide silicon-on-insulator Mach-Zehnder interferometers. IEEE Photonics Technol. Lett. 19(5), 342–344 (2007)
|
51 |
Yan,S., Zhu,X., Frandsen,L.H., Xiao,S., Mortensen, N.A., Dong,J., Ding,Y.: Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nat. Commun. 8(1), 1–8 (2017)
|
52 |
Densmore,A., Janz,S., Ma,R., Schmid, J.H., Xu,D.-X., Delâge,A., Lapointe, J., Vachon,M., Cheben,P.: Compact and low power thermo-optic switch using folded silicon waveguides. Opt. Express 17(13), 10457–10465 (2009)
|
53 |
Murray,K., Lu,Z., Jayatilleka,H., Chrostowski,L.: Dense dissimilar waveguide routing for highly efficient thermo-optic switches on silicon. Opt. Express 23(15), 19575–19585 (2015)
|
54 |
Sun,P., Reano,R.M.: Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides. Opt. Express 18(8), 8406–8411 (2010)
|
55 |
Lu,Z., Murray, K., Jayatilleka,H., Chrostowski,L.: Michelson interferometer thermo-optic switch on SOI with a 50-μw power consumption. IEEE Photonics Technol. Lett. 27(22), 2319–2322 (2015)
|
56 |
Qiu,H., Liu,Y., Luan,C., Kong, D., Guan,X., Ding,Y., Hu,H.: Energy-efficient thermo-optic silicon phase shifter with well-balanced overall performance. Opt. Lett. 45(17), 4806–4809 (2020)
|
57 |
Qiu,H., Liu,Y., Luan,C., Kong, D., Guan,X., Ding,Y., Hu,H.: Energy-efficient thermo-optic silicon phase shifter with well-balanced overall performance. Opt. Lett. 45(17), 4806–4809 (2020)
|
58 |
Tong,W., Wei,Y., Zhou,H., Dong, J., Zhang,X.: The design of a low-loss, fast-response, metal thermo-optic phase shifter based on coupled-mode theory. In: Photonics, vol. 9, p. 447, MDPI (2022)
|
59 |
Jacques,M., Samani, A., El-Fiky,E., Patel,D., Xing,Z., Plant,D.V.: Optimization of thermo-optic phase-shifter design and miti-gation of thermal crosstalk on the SOI platform. Opt. Express 27(8), 10456–10471 (2019)
|
60 |
Liu,Y., Meng,X., Hu,H.: 1000-element silicon optical phased array for aliasing-free 2d optical beam steering. In: CLEO: Applications and Technology, pp. 6–3. Optica Publishing Group (2022).
|
61 |
Liu,Y., Hu,H.: Silicon optical phased array with 180-degree field of view for solid-state 2d beam steering. In: CLEO: Science and Innovations, pp. 1–3. Optica Publishing Group (2022).
|
62 |
Qiu,H., Liu,Y., Meng,X., Guan, X., Ding,Y., Hu,H.: Bidirectional high sidelobe suppression silicon optical phased array. Photonics Res. 11(4), 659–668 (2023)
|
63 |
Qiu,H., Liu,Y., Meng,X., Guan, X., Ding,Y., Hu,H.: Silicon optical phased array with high sidelobe suppression on both horizontal and vertical directions. In: CLEO: Science and Innovations, pp. 2–7. Optica Publishing Group (2022)
|
64 |
Chung,S., Abediasl, H., Hashemi,H.: A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS. IEEE J. Solid-State Circuits 53(1), 275–296 (2017)
|
65 |
Wang,Q., Wang,S., Yu,M., et al.: Silicon nitride assisted 1×64 optical phased array based on a SOI platform. Opt. Express 29(7), 10509–10517 (2021)
|
/
〈 | 〉 |