REVIEW ARTICLE

χ(2) nonlinear photonics in integrated microresonators

  • Pengfei Liu 1 ,
  • Hao Wen 1 ,
  • Linhao Ren 1 ,
  • Lei Shi , 1,2 ,
  • Xinliang Zhang 1,2
Expand
  • 1. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2. Optics Valley Laboratory, Wuhan 430074, China
lshi@hust.edu.cn

Received date: 04 Jan 2023

Accepted date: 22 May 2023

Copyright

2023 The Author(s) 2023

Abstract

Second-order (χ(2)) optical nonlinearity is one of the most common mechanisms for modulating and generating coherent light in photonic devices. Due to strong photon confinement and long photon lifetime, integrated microresonators have emerged as an ideal platform for investigation of nonlinear optical effects. However, existing silicon-based materials lack a χ(2) response due to their centrosymmetric structures. A variety of novel material platforms possessing χ(2) nonlinearity have been developed over the past two decades. This review comprehensively summarizes the progress of second-order nonlinear optical effects in integrated microresonators. First, the basic principles of χ(2) nonlinear effects are introduced. Afterward, we highlight the commonly used χ(2) nonlinear optical materials, including their material properties and respective functional devices. We also discuss the prospects and challenges of utilizing χ(2) nonlinearity in the field of integrated microcavity photonics.

Cite this article

Pengfei Liu , Hao Wen , Linhao Ren , Lei Shi , Xinliang Zhang . χ(2) nonlinear photonics in integrated microresonators[J]. Frontiers of Optoelectronics, 2023 , 16(3) : 18 . DOI: 10.1007/s12200-023-00073-4

1
Franken, P.A., Hill, A.E., Peters, C.W., Weinreich, G.: Generation of optical harmonics. Phys. Rev. Lett. 7(4), 118–119 (1961)

DOI

2
Shen, Y.R.: Surface properties probed by second-harmonic and sum-frequency generation. Nature 337(6207), 519–525 (1989)

DOI

3
Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

DOI

4
Vodopyanov, K.L., Fejer, M.M., Yu, X., Harris, J.S., Lee, Y.S., Hurlbut, W.C., Kozlov, V.G., Bliss, D., Lynch, C.: Terahertz-wave generation in quasi-phase-matched GaAs. Appl. Phys. Lett. 89(14), 141119 (2006)

DOI

5
He, J., Chen, H., Hu, J., Zhou, J., Zhang, Y., Kovach, A., Sideris, C., Harrison, M.C., Zhao, Y., Armani, A.M.: Nonlinear nano-photonic devices in the ultraviolet to visible wavelength range. Nanophotonics 9(12), 3781–3804 (2020)

DOI

6
McKenna, T.P., Stokowski, H.S., Ansari, V., Mishra, J., Jankowski, M., Sarabalis, C.J., Herrmann, J.F., Langrock, C., Fejer, M.M., Safavi-Naeini, A.H.: Ultra-low-power second-order nonlinear optics on a chip. Nat. Commun. 13(1), 4532 (2022)

DOI

7
Bussières, F., Clausen, C., Tiranov, A., Korzh, B., Verma, V.B., Nam, S.W., Marsili, F., Ferrier, A., Goldner, P., Herrmann, H., Silberhorn, C., Sohler, W., Afzelius, M., Gisin, N.: Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat. Photonics 8(10), 775–778 (2014)

DOI

8
Bogdanov, S., Shalaginov, M.Y., Boltasseva, A., Shalaev, V.M.: Material platforms for integrated quantum photonics. Opt. Mater. Express 7(1), 111–132 (2017)

DOI

9
Bock, M., Eich, P., Kucera, S., Kreis, M., Lenhard, A., Becher, C., Eschner, J.: High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion. Nat. Commun. 9(1), 1998 (2018)

DOI

10
Tang, L., Tang, J., Chen, M., Nori, F., Xiao, M., Xia, K.: Quantum squeezing induced optical nonreciprocity. Phys. Rev. Lett. 128(8), 083604 (2022)

DOI

11
Wang, C., Zhang, M., Chen, X., Bertrand, M., Shams-Ansari, A., Chandrasekhar, S., Winzer, P., Lončar, M.: Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562(7725), 101–104 (2018)

DOI

12
Vahala, K.J.: Optical microcavities. Nature 424(6950), 839–846 (2003)

DOI

13
Ward, J., Benson, O.: WGM microresonators: sensing, lasing and fundamental optics with microspheres. Laser Photonics Rev. 5(4), 553–570 (2011)

DOI

14
Lin, G., Coillet, A., Chembo, Y.K.: Nonlinear photonics with high-Q whispering-gallery-mode resonators. Adv. Opt. Photonics 9(4), 828–890 (2017)

DOI

15
Song, Q.: Emerging opportunities for ultra-high Q whispering gallery mode microcavities. Sci. China Phys. Mech. Astron. 62(7), 74231 (2019)

DOI

16
Liu, J., Bo, F., Chang, L., Dong, C.H., Ou, X., Regan, B., Shen, X., Song, Q., Yao, B., Zhang, W., Zou, C.L., Xiao, Y.F.: Emerging material platforms for integrated microcavity photonics. Sci. China Phys. Mech. Astron. 65(10), 104201 (2022)

DOI

17
Soref, R.: The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006)

DOI

18
Strekalov, D.V., Marquardt, C., Matsko, A.B., Schwefel, H.G.L., Leuchs, G.: Nonlinear and quantum optics with whispering gallery resonators. J. Opt. 18(12), 123002 (2016)

DOI

19
Zhang, X., Cao, Q.T., Wang, Z., Liu, Y.X., Qiu, C.W., Yang, L., Gong, Q., Xiao, Y.F.: Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photonics 13(1), 21–24 (2019)

DOI

20
Puzyrev, D.N., Skryabin, D.V.: Ladder of Eckhaus instabilities and parametric conversion in χ(2) microresonators. Commun. Phys. 5(1), 138 (2022)

DOI

21
Feng, S., Lei, T., Chen, H., Cai, H., Luo, X., Poon, A.W.: Silicon photonics: from a microresonator perspective. Laser Photonics Rev. 6(2), 145–177 (2012)

DOI

22
Moss, D.J., Morandotti, R., Gaeta, A.L., Lipson, M.: New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics 7(8), 597–607 (2013)

DOI

23
Thomson, D., Zilkie, A., Bowers, J.E., Komljenovic, T., Reed, G.T., Vivien, L., Marris-Morini, D., Cassan, E., Virot, L., Fédéli, J.M., Hartmann, J.M., Schmid, J.H., Xu, D.X., Boeuf, F., O’Brien, P., Mashanovich, G.Z., Nedeljkovic, M.: Roadmap on silicon photonics. J. Opt. 18(7), 073003 (2016)

DOI

24
Kovach, A., Chen, D., He, J., Choi, H., Dogan, A.H., Ghasemkhani, M., Taheri, H., Armani, A.M.: Emerging material systems for integrated optical Kerr frequency combs. Adv. Opt. Photonics 12(1), 135–222 (2020)

DOI

25
Blumenthal, D.J., Heideman, R., Geuzebroek, D., Leinse, A., Roeloffzen, C.: Silicon nitride in silicon photonics. Proc. IEEE 106(12), 2209–2231 (2018)

DOI

26
Taghavi, I., Moridsadat, M., Tofini, A., Raza, S., Jaeger, N.A.F., Chrostowski, L., Shastri, B.J., Shekhar, S.: Polymer modulators in silicon photonics: review and projections. Nanophotonics 11(17), 3855–3871 (2022)

DOI

27
Lu, X., Moille, G., Rao, A., Westly, D.A., Srinivasan, K.: Efficient photoinduced second-harmonic generation in silicon nitride photonics. Nat. Photonics 15(2), 131–136 (2021)

DOI

28
Nitiss, E., Hu, J., Stroganov, A., Brès, C.S.: Optically reconfigurable quasi-phase-matching in silicon nitride microresonators. Nat. Photonics 16(2), 134–141 (2022)

DOI

29
Boes, A., Corcoran, B., Chang, L., Bowers, J., Mitchell, A.: Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev. 12(4), 1700256 (2018)

DOI

30
Wang, S., Yang, L., Cheng, R., Xu, Y., Shen, M., Cone, R.L., Thiel, C.W., Tang, H.X.: Incorporation of erbium ions into thin-film lithium niobate integrated photonics. Appl. Phys. Lett. 116(15), 151103 (2020)

DOI

31
Milad Gholipour, V., Sasan, F.: Applications of thin-film lithium niobate in nonlinear integrated photonics. Adv. Photonics 4(3), 034001 (2022)

DOI

32
Chen, G., Li, N., Ng, J.D., Lin, H.L., Zhou, Y., Fu, Y.H., Lee, L.Y., Yu, Y., Liu, A.Q., Danner, A.: Advances in lithium niobate photonics: development status and perspectives. Adv. Photonics 4(3), 034003 (2022)

DOI

33
Yi, A., Wang, C., Zhou, L., Zhu, Y., Zhang, S., You, T., Zhang, J., Ou, X.: Silicon carbide for integrated photonics. Appl. Phys. Rev. 9(3), 031302 (2022)

DOI

34
Li, N., Ho, C.P., Zhu, S., Fu, Y.H., Zhu, Y., Lee, L.Y.T.: Aluminium nitride integrated photonics: a review. Nanophotonics 10(9), 2347–2387 (2021)

DOI

35
Liu, X., Bruch, A.W., Tang, H.X.: Aluminum nitride photonic integrated circuits: from piezo-optomechanics to nonlinear optics. Adv. Opt. Photonics 15(1), 236–317 (2023)

DOI

36
Zheng, Y., Sun, C., Xiong, B., Wang, L., Hao, Z., Wang, J., Han, Y., Li, H., Yu, J., Luo, Y.: Integrated gallium nitride nonlinear photonics. Laser Photonics Rev. 16(1), 2100071 (2022)

DOI

37
Wilson, D.J., Schneider, K., Hönl, S., Anderson, M., Baumgartner, Y., Czornomaz, L., Kippenberg, T.J., Seidler, P.: Integrated gallium phosphide nonlinear photonics. Nat. Photonics 14(1), 57–62 (2020)

DOI

38
Mobini, E., Espinosa, D.H.G., Vyas, K., Dolgaleva, K.: AlGaAs nonlinear integrated photonics. Micromachines (Basel) 13(7), 991 (2022)

DOI

39
Zhu, D., Shao, L.B., Yu, M.J., Cheng, R., Desiatov, B., Xin, C.J., Hu, Y.W., Holzgrafe, J., Ghosh, S., Shams-Ansari, A., Puma, E., Sinclair, N., Reimer, C., Zhang, M., Loncar, M.: Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 13(2), 242–352 (2021)

DOI

40
Gao, R., Zhang, H., Bo, F., Fang, W., Hao, Z., Yao, N., Lin, J., Guan, J., Deng, L., Wang, M., Qiao, L., Cheng, Y.: Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 108. New J. Phys. 23(12), 123027 (2021)

DOI

41
Gräupner, P., Pommier, J.C., Cachard, A., Coutaz, J.L.: Electro-optical effect in aluminum nitride waveguides. J. Appl. Phys. 71(9), 4136–4139 (1992)

DOI

42
Pernice, W.H.P., Xiong, C., Schuck, C., Tang, H.X.: Second harmonic generation in phase matched aluminum nitride wave-guides and micro-ring resonators. Appl. Phys. Lett. 100(22), 223501 (2012)

DOI

43
Liu, K., Yao, S., Ding, Y., Wang, Z., Guo, Y., Yan, J., Wang, J., Yang, C., Bao, C.: Fundamental linewidth of an AlN microcavity Raman laser. Opt. Lett. 47(17), 4295–4298 (2022)

DOI

44
Powell, K., Li, L., Shams-Ansari, A., Wang, J., Meng, D., Sinclair, N., Deng, J., Lončar, M., Yi, X.: Integrated silicon carbide electro-optic modulator. Nat. Commun. 13(1), 1851 (2022)

DOI

45
Wang, S., Zhan, M., Wang, G., Xuan, H., Zhang, W., Liu, C., Xu, C., Liu, Y., Wei, Z., Chen, X.: 4H-SiC: a new nonlinear mate-rial for midinfrared lasers. Laser Photonics Rev. 7(5), 831–838 (2013)

DOI

46
Wang, C., Fang, Z., Yi, A., Yang, B., Wang, Z., Zhou, L., Shen, C., Zhu, Y., Zhou, Y., Bao, R., Li, Z., Chen, Y., Huang, K., Zhang, J., Cheng, Y., Ou, X.: High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonics. Light Sci. Appl. 10(1), 139 (2021)

DOI

47
Long, X.C., Myers, R.A., Brueck, S.R.J., Ramer, R., Zheng, K., Hersee, S.D.: GaN linear electro-optic effect. Appl. Phys. Lett. 67(10), 1349–1351 (1995)

DOI

48
Sanford, N.A., Davydov, A.V., Tsvetkov, D.V., Dmitriev, A.V., Keller, S., Mishra, U.K., DenBaars, S.P., Park, S.S., Han, J.Y., Molnar, R.J.: Measurement of second order susceptibilities of GaN and AlGaN. J. Appl. Phys. 97(5), 053512 (2005)

DOI

49
Nelson, D.F., Turner, E.H.: Electro-optic and piezoelectric coefficients and refractive index of gallium phosphide. J. Appl. Phys. 39(7), 3337–3343 (1968)

DOI

50
Shoji, I., Kondo, T., Kitamoto, A., Shirane, M., Ito, R.: Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B 14(9), 2268–2294 (1997)

DOI

51
Berseth, C.A., Wuethrich, C., Reinhart, F.K.: The electro-optic coefficients of GaAs: measurements at 1.32 and 1.52 μm and study of their dispersion between 0.9 and 10 μm. J. Appl. Phys. 71(6), 2821–2825 (1992)

DOI

52
Guha, B., Marsault, F., Cadiz, F., Morgenroth, L., Ulin, V., Berkovitz, V., Lemaître, A., Gomez, C., Amo, A., Combrié, S., Gérard, B., Leo, G., Favero, I.: Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 106. Optica 4(2), 218–221 (2017)

DOI

53
Boyd, R.W.: Nonlinear Optics. Academic press, London (2020)

54
Zhao, Y., Jang, J.K., Okawachi, Y., Gaeta, A.L.: Theory of χ(2)-microresonator-based frequency conversion. Opt. Lett. 46(21), 5393–5396 (2021)

DOI

55
Saleh, B., Teich, M.: Fundamentals of Photonics. Wiley, Hoboken (2019)

56
Thomaschewski, M., Bozhevolnyi, S.I.: Pockels modulation in integrated nanophotonics. Appl. Phys. Rev. 9(2), 021311 (2022)

DOI

57
Guo, X., Zou, C.L., Tang, H.X.: Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency. Optica 3(10), 1126–1131 (2016)

DOI

58
Fathpour, S.: Heterogeneous nonlinear integrated photonics. IEEE J. Quantum Electron. 54(6), 1–16 (2018)

DOI

59
Fürst, J.U., Strekalov, D.V., Elser, D., Lassen, M., Andersen, U.L., Marquardt, C., Leuchs, G.: Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator. Phys. Rev. Lett. 104(15), 153901 (2010)

DOI

60
Lin, J., Xu, Y., Ni, J., Wang, M., Fang, Z., Qiao, L., Fang, W., Cheng, Y.: Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator. Phys. Rev. Appl. 6(1), 014002 (2016)

DOI

61
Luo, R., Jiang, H., Rogers, S., Liang, H., He, Y., Lin, Q.: On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt. Express 25(20), 24531–24539 (2017)

DOI

62
Lin, G., Fürst, J.U., Strekalov, D.V., Yu, N.: Wide-range cyclic phase matching and second harmonic generation in whispering gallery resonators. Appl. Phys. Lett. 103(18), 181107 (2013)

DOI

63
Lin, J., Yao, N., Hao, Z., Zhang, J., Mao, W., Wang, M., Chu, W., Wu, R., Fang, Z., Qiao, L., Fang, W., Bo, F., Cheng, Y.: Broadband quasi-phase-matched harmonic generation in an onchip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett. 122(17), 173903 (2019)

DOI

64
Xiong, C., Pernice, W., Ryu, K.K., Schuck, C., Fong, K.Y., Palacios, T., Tang, H.X.: Integrated GaN photonic circuits on silicon (100) for second harmonic generation. Opt. Express 19(11), 10462–10470 (2011)

DOI

65
Chen, J., Sua, Y.M., Fan, H., Huang, Y.: Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics. OSA Continuum 1(1), 229–242 (2018)

DOI

66
Luo, R., He, Y., Liang, H., Li, M., Ling, J., Lin, Q.: Optical parametric generation in a lithium niobate microring with modal phase matching. Phys. Rev. Appl. 11(3), 034026 (2019)

DOI

67
Ilchenko, V.S., Matsko, A.B., Savchenkov, A.A., Maleki, L.: Low-threshold parametric nonlinear optics with quasi-phase-matched whispering-gallery modes. J. Opt. Soc. Am. B 20(6), 1304–1308 (2003)

DOI

68
Niu, Y., Yan, X., Chen, J., Ma, Y., Zhou, Y., Chen, H., Wu, Y., Bai, Z.: Research progress on periodically poled lithium niobate for nonlinear frequency conversion. Infrared Phys. Technol. 125(3), 104243 (2022)

DOI

69
Logan, A.D., Shree, S., Chakravarthi, S., Yama, N., Pederson, C., Hestroffer, K., Hatami, F., Fu, K.C.: Triply-resonant sum frequency conversion with gallium phosphide ring resonators. Opt. Express 31(2), 1516–1531 (2023)

DOI

70
Lu, J., Surya, J.B., Liu, X., Bruch, A.W., Gong, Z., Xu, Y., Tang, H.X.: Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250000%/W. Optica 6(12), 1455–1460 (2019)

DOI

71
Zhao, J., Rüsing, M., Roeper, M., Eng, L.M., Mookherjea, S.: Poling thin-film X-cut lithium niobate for quasi-phase matching with sub-micrometer periodicity. J. Appl. Phys. 127(19), 193104 (2020)

DOI

72
Nagy, J.T., Reano, R.M.: Reducing leakage current during periodic poling of ion-sliced X-cut MgO doped lithium niobate thin films. Opt. Mater. Express 9(7), 3146–3155 (2019)

DOI

73
Rüsing, M., Zhao, J., Mookherjea, S.: Second harmonic microscopy of poled X-cut thin film lithium niobate: understanding the contrast mechanism. J. Appl. Phys. 126(11), 114105 (2019)

DOI

74
Chen, J., Ma, Z., Sua, Y.M., Li, Z., Tang, C., Huang, Y.: Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica 6(9), 1244–1245 (2019)

DOI

75
Hao, Z., Zhang, L., Mao, W., Gao, A., Gao, X., Gao, F., Bo, F., Zhang, G., Xu, J.: Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators. Photon. Res. 8(3), 311–317 (2020)

DOI

76
Lu, J., Li, M., Zou, C., Al Sayem, A., Tang, H.X.: Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators. Optica 7(12), 1654–1659 (2020)

DOI

77
Shur, V.Y., Akhmatkhanov, A.R., Baturin, I.S.: Micro- and nanodomain engineering in lithium niobate. Appl. Phys. Rev. 2(4), 040604 (2015)

DOI

78
Boes, A., Chang, L., Langrock, C., Yu, M., Zhang, M., Lin, Q., Lončar, M., Fejer, M., Bowers, J., Mitchell, A.: Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379(6627), eabj4396 (2023)

DOI

79
Qi, Y.F., Li, Y.: Integrated lithium niobate photonics. Nanophotonics 9(6), 1287–1320 (2020)

DOI

80
Luo, Q., Hao, Z., Yang, C., Zhang, R., Zheng, D., Liu, S., Liu, H., Bo, F., Kong, Y., Zhang, G., Xu, J.: Microdisk lasers on an erbium-doped lithium-niobite chip. Sci. China Phys. Mech. Astron. 64(3), 234263 (2021)

DOI

81
Liu, Y., Yan, X., Wu, J., Zhu, B., Chen, Y., Chen, X.: On-chip erbium-doped lithium niobate microcavity laser. Sci. China Phys. Mech. Astron. 64(3), 234262 (2021)

DOI

82
Jia, Y., Wu, J., Sun, X., Yan, X., Xie, R., Wang, L., Chen, Y., Chen, F.: Integrated photonics based on rare-earth ion-doped thin-film lithium niobate. Laser Photonics Rev. 16(9), 2200059 (2022)

DOI

83
Poberaj, G., Hu, H., Sohler, W., Günter, P.: Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev. 6(4), 488–503 (2012)

DOI

84
Sun, D., Zhang, Y., Wang, D., Song, W., Liu, X., Pang, J., Geng, D., Sang, Y., Liu, H.: Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications. Light Sci. Appl. 9(1), 197 (2020)

DOI

85
Kong, Y., Bo, F., Wang, W., Zheng, D., Liu, H., Zhang, G., Rupp, R., Xu, J.: Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Adv. Mater. 32(3), e1806452 (2020)

DOI

86
Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A., Loncar, M.: Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4(12), 1536–1537 (2017)

DOI

87
Luke, K., Kharel, P., Reimer, C., He, L., Loncar, M., Zhang, M.: Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express 28(17), 24452–24458 (2020)

DOI

88
Liu, S., Zheng, Y., Chen, X.: Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk. Opt. Lett. 42(18), 3626–3629 (2017)

DOI

89
Wolf, R., Jia, Y., Bonaus, S., Werner, C.S., Herr, S.J., Breunig, I., Buse, K., Zappe, H.: Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica 5(7), 872–875 (2018)

DOI

90
Zhang, M., Wang, C., Hu, Y., Shams-Ansari, A., Ren, T., Fan, S., Lončar, M.: Electronically programmable photonic molecule. Nat. Photonics 13(1), 36–40 (2019)

DOI

91
Desiatov, B., Shams-Ansari, A., Zhang, M., Wang, C., Lončar, M.: Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6(3), 380–384 (2019)

DOI

92
Hu, Y., Yu, M., Sinclair, N., Zhu, D., Cheng, R., Wang, C., Lončar, M.: Mirror-induced reflection in the frequency domain. Nat. Commun. 13(1), 6293 (2022)

DOI

93
Zhuang, R., He, J., Qi, Y., Li, Y.: High-Q thin film lithium niobate microrings fabricated with wet etching. Adv. Mater. 35(3), e2208113 (2023)

DOI

94
Wu, R., Zhang, J., Yao, N., Fang, W., Qiao, L., Chai, Z., Lin, J., Cheng, Y.: Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett. 43(17), 4116–4119 (2018)

DOI

95
Fang, Z., Haque, S., Lin, J., Wu, R., Zhang, J., Wang, M., Zhou, J., Rafa, M., Lu, T., Cheng, Y.: Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium nibote microresonator. Opt. Lett. 44(5), 1214–1217 (2019)

DOI

96
Gao, R., Yao, N., Guan, J., Deng, L., Lin, J., Wang, M., Qiao, L., Fang, W., Cheng, Y.: Lithium niobate microring with ultra-high Q factor above 108. Chin. Opt. Lett. 20(1), 011902 (2022)

DOI

97
Ye, X., Liu, S., Chen, Y., Zheng, Y., Chen, X.: Sum-frequency generation in lithium-niobate-on-insulator microdisk via modal phase matching. Opt. Lett. 45(2), 523–526 (2020)

DOI

98
Lin, J., Xu, Y., Fang, Z., Wang, M., Song, J., Wang, N., Qiao, L., Fang, W., Cheng, Y.: Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Sci. Rep. 5(1), 8072 (2015)

DOI

99
Wang, M., Xu, Y., Fang, Z., Liao, Y., Wang, P., Chu, W., Qiao, L., Lin, J., Fang, W., Cheng, Y.: On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes. Opt. Express 25(1), 124–129 (2017)

DOI

100
Lin, J., Bo, F., Cheng, Y., Xu, J.: Advances in on-chip photonic devices based on lithium niobate on insulator. Photon. Res. 8(12), 1910–1936 (2020)

DOI

101
Zheng, Y., Chen, X.: Nonlinear wave mixing in lithium niobate thin film. Adv. Phys. X 6(1), 1889402 (2021)

DOI

102
Xie, R.R., Li, G.Q., Chen, F., Long, G.L.: Microresonators in lithium niobate thin films. Adv. Opt. Mater. 9(19), 2100539 (2021)

DOI

103
Jia, Y., Wang, L., Chen, F.: Ion-cut lithium niobate on insulator technology: recent advances and perspectives. Appl. Phys. Rev. 8(1), 011307 (2021)

DOI

104
Zhang, J., Pan, B., Liu, W., Dai, D., Shi, Y.: Ultra-compact electro-optic modulator based on etchless lithium niobate photonic crystal nanobeam cavity. Opt. Express 30(12), 20839–20846 (2022)

DOI

105
Zhang, M., Wang, C., Kharel, P., Zhu, D., Lončar, M.: Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica 8(5), 652–667 (2021)

DOI

106
Sinatkas, G., Christopoulos, T., Tsilipakos, O., Kriezis, E.E.: Electro-optic modulation in integrated photonics. J. Appl. Phys. 130(1), 010901 (2021)

DOI

107
Xu, M., Cai, X.: Advances in integrated ultra-wideband electrooptic modulators. Opt. Express 30(5), 7253–7274 (2022)

DOI

108
Wang, C., Gonin, I., Grassellino, A., Kazakov, S., Romanenko, A., Yakovlev, V.P., Zorzetti, S.: High-efficiency microwave-optical quantum transduction based on a cavity electro-optic super-conducting system with long coherence time. npj Quantum Inf. 8(1), 149 (2022)

DOI

109
Yu, M., Barton Iii, D., Cheng, R., Reimer, C., Kharel, P., He, L., Shao, L., Zhu, D., Hu, Y., Grant, H.R., Johansson, L., Okawachi, Y., Gaeta, A.L., Zhang, M., Lončar, M.: Integrated femtosecond pulse generator on thin-film lithium niobate. Nature 612(7939), 252–258 (2022)

DOI

110
Huang, H., Balčytis, A., Dubey, A., Boes, A., Nguyen, T.G., Ren, G., Tan, M., Mitchell, A.: Spatio-temporal isolator in lithium niobate on insulator. Opto-Electron. Sci. 2(3), 220022 (2023)

DOI

111
Shah, M., Briggs, I., Chen, P.K., Hou, S., Fan, L.: Visible-telecom tunable dual-band optical isolator based on dynamic modulation in thin-film lithium niobate. Opt. Lett. 48(8), 1978–1981 (2023)

DOI

112
Wang, L., Wang, C., Wang, J., Bo, F., Zhang, M., Gong, Q., Lončar, M., Xiao, Y.F.: High-Q chaotic lithium niobate microdisk cavity. Opt. Lett. 43(12), 2917–2920 (2018)

DOI

113
Ma, Z., Chen, J.Y., Li, Z., Tang, C., Sua, Y.M., Fan, H., Huang, Y.P.: Ultrabright quantum photon sources on chip. Phys. Rev. Lett. 125(26), 263602 (2020)

DOI

114
Li, M., Zhang, Y.L., Tang, H.X., Dong, C.H., Guo, G.C., Zou, C.L.: Photon–photon quantum phase gate in a photonic molecule with χ(2) nonlinearity. Phys. Rev. Appl. 13(4), 044013 (2020)

115
Chen, J., Li, Z., Ma, Z., Tang, C., Fan, H., Sua, Y.M., Huang, Y.: Photon conversion and interaction in a quasi-phase-matched microresonator. Phys. Rev. Appl. 16(6), 064004 (2021)

DOI

116
Saravi, S., Pertsch, T., Setzpfandt, F.: Lithium niobate on insulator: an emerging platform for integrated quantum photonics. Adv. Opt. Mater. 9(22), 2100789 (2021)

DOI

117
Shams-Ansari, A., Yu, M., Chen, Z., Reimer, C., Zhang, M., Picqué, N., Lončar, M.: Thin-film lithium-niobate electro-optic platform for spectrally tailored dual-comb spectroscopy. Commun. Phys. 5(1), 88 (2022)

DOI

118
Wang, C., Burek, M.J., Lin, Z., Atikian, H.A., Venkataraman, V., Huang, I.C., Stark, P., Lončar, M.: Integrated high quality factor lithium niobate microdisk resonators. Opt. Express 22(25), 30924–30933 (2014)

DOI

119
Lin, J., Xu, Y., Fang, Z., Wang, M., Wang, N., Qiao, L., Fang, W., Cheng, Y.: Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining. Sci. China Phys. Mech. Astron. 58(11), 114209 (2015)

DOI

120
Hao, Z., Zhang, L., Gao, A., Mao, W., Lyu, X., Gao, X., Bo, F., Gao, F., Zhang, G., Xu, J.: Periodically poled lithium niobate whispering gallery mode microcavities on a chip. Sci. China Phys. Mech. Astron. 61(11), 114211 (2018)

DOI

121
Zhang, L., Hao, Z., Luo, Q., Gao, A., Zhang, R., Yang, C., Gao, F., Bo, F., Zhang, G., Xu, J.: Dual-periodically poled lithium niobate microcavities supporting multiple coupled parametric processes. Opt. Lett. 45(12), 3353–3356 (2020)

DOI

122
Kores, C.C., Canalias, C., Laurell, F.: Quasi-phase matching waveguides on lithium niobate and KTP for nonlinear frequency conversion: a comparison. APL Photonics 6(9), 091102 (2021)

DOI

123
Chen, J.Y., Tang, C., Jin, M., Li, Z., Ma, Z., Fan, H., Kumar, S., Sua, Y.M., Huang, Y.P.: Efficient frequency doubling with active stabilization on chip. Laser Photonics Rev. 15(11), 2100091 (2021)

DOI

124
Jiang, H., Liang, H., Luo, R., Chen, X., Chen, Y., Lin, Q.: Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities. Appl. Phys. Lett. 113(2), 021104 (2018)

DOI

125
Li, M., Liang, H., Luo, R., He, Y., Lin, Q.: High-Q 2D lithium niobate photonic crystal slab nanoresonators. Laser Photonics Rev. 13(5), 1800228 (2019)

DOI

126
Yuan, S., Wu, Y., Dang, Z., Zeng, C., Qi, X., Guo, G., Ren, X., Xia, J.: Strongly enhanced second harmonic generation in a thin film lithium niobate heterostructure cavity. Phys. Rev. Lett. 127(15), 153901 (2021)

DOI

127
Li, Y., Huang, Z., Qiu, W., Dong, J., Guan, H., Lu, H.: Recent progress of second harmonic generation based on thin film lithium niobate. Chin. Opt. Lett. 19(6), 060012 (2021). (Invited)

DOI

128
Hao, Z., Wang, J., Ma, S., Mao, W., Bo, F., Gao, F., Zhang, G., Xu, J.: Sum-frequency generation in on-chip lithium niobate microdisk resonators. Photon. Res. 5(6), 623–628 (2017)

DOI

129
Hao, Z., Zhang, L., Wang, J., Bo, F., Gao, F., Zhang, G., Xu, J.: Sum-frequency generation of a laser and its background in an onchip lithium-niobate microdisk. Chin. Opt. Lett. 20(11), 111902 (2022)

DOI

130
Fürst, J.U., Strekalov, D.V., Elser, D., Aiello, A., Andersen, U.L., Marquardt, C.H., Leuchs, G.: Low-threshold optical parametric oscillations in a whispering gallery mode resonator. Phys. Rev. Lett. 105(26), 263904 (2010)

DOI

131
Beckmann, T., Linnenbank, H., Steigerwald, H., Sturman, B., Haertle, D., Buse, K., Breunig, I.: Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators. Phys. Rev. Lett. 106(14), 143903 (2011)

DOI

132
Yang, J., Wang, C.: Efficient terahertz generation scheme in a thin-film lithium niobate-silicon hybrid platform. Opt. Express 29(11), 16477–16486 (2021)

DOI

133
Lu, J., Al Sayem, A., Gong, Z., Surya, J.B., Zou, C., Tang, H.X.: Ultralow-threshold thin-film lithium niobate optical parametric oscillator. Optica 8(4), 539–544 (2021)

DOI

134
Xu, B., Chen, L., Lin, J., Feng, L., Niu, R., Zhou, Z., Gao, R., Dong, C., Guo, G., Gong, Q., Cheng, Y., Xiao, Y., Ren, X.: Spectrally multiplexed and bright entangled photon pairs in a lithium niobate microresonator. Sci. China Phys. Mech. Astron. 65(9), 294262 (2022)

DOI

135
Ikuta, R., Asano, M., Tani, R., Yamamoto, T., Imoto, N.: Frequency comb generation in a quadratic nonlinear waveguide resonator. Opt. Express 26(12), 15551–15558 (2018)

DOI

136
Liu, S., Zheng, Y., Fang, Z., Ye, X., Cheng, Y., Chen, X.: Effective four-wave mixing in the lithium niobate on insulator microdisk by cascading quadratic processes. Opt. Lett. 44(6), 1456–1459 (2019)

DOI

137
Szabados, J., Puzyrev, D.N., Minet, Y., Reis, L., Buse, K., Villois, A., Skryabin, D.V., Breunig, I.: Frequency comb generation via cascaded second-order nonlinearities in microresonators. Phys. Rev. Lett. 124(20), 203902 (2020)

DOI

138
Wolf, R., Breunig, I., Zappe, H., Buse, K.: Cascaded second-order optical nonlinearities in on-chip micro rings. Opt. Express 25(24), 29927–29933 (2017)

DOI

139
Javerzac-Galy, C., Plekhanov, K., Bernier, N.R., Toth, L.D., Feofanov, A.K., Kippenberg, T.J.: On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator. Phys. Rev. A 94(5), 053815 (2016)

DOI

140
Holzgrafe, J., Sinclair, N., Zhu, D., Shams-Ansari, A., Colangelo, M., Hu, Y., Zhang, M., Berggren, K.K., Lončar, M.: Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction. Optica 7(12), 1714–1720 (2020)

DOI

141
Bahadori, M., Yang, Y., Hassanien, A.E., Goddard, L.L., Gong, S.: Ultra-efficient and fully isotropic monolithic microring modulators in a thin-film lithium niobate photonics platform. Opt. Express 28(20), 29644–29661 (2020)

DOI

142
Hu, Y., Yu, M., Zhu, D., Sinclair, N., Shams-Ansari, A., Shao, L., Holzgrafe, J., Puma, E., Zhang, M., Lončar, M.: On-chip electrooptic frequency shifters and beam splitters. Nature 599(7886), 587–593 (2021)

DOI

143
Xu, Y., Sayem, A.A., Fan, L., Zou, C.L., Wang, S., Cheng, R., Fu, W., Yang, L., Xu, M., Tang, H.X.: Bidirectional interconversion of microwave and light with thin-film lithium niobate. Nat. Commun. 12(1), 4453 (2021)

DOI

144
Snigirev, V., Riedhauser, A., Lihachev, G., Churaev, M., Riemensberger, J., Wang, R.N., Siddharth, A., Huang, G., Möhl, C., Popoff, Y., Drechsler, U., Caimi, D., Hönl, S., Liu, J., Seidler, P., Kippenberg, T.J.: Ultrafast tunable lasers using lithium niobate integrated photonics. Nature 615(7952), 411–417 (2023)

DOI

145
Guarino, A., Poberaj, G., Rezzonico, D., Degl’Innocenti, R., Günter, P.: Electro-optically tunable microring resonators in lithium niobate. Nat. Photonics 1(7), 407–410 (2007)

DOI

146
Wang, C., Zhang, M., Yu, M., Zhu, R., Hu, H., Loncar, M.: Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. 10(1), 978 (2019)

DOI

147
Xia, K., Sardi, F., Sauerzapf, C., Kornher, T., Becker, H.W., Kis, Z., Kovacs, L., Dertli, D., Foglszinger, J., Kolesov, R., Wrachtrup, J.: Tunable microcavities coupled to rare-earth quantum emitters. Optica 9(4), 445–450 (2022)

DOI

148
Lin, J., Farajollahi, S., Fang, Z., Yao, N., Gao, R., Guan, J., Deng, L., Lu, T., Wang, M., Zhang, H., Fang, W., Qiao, L., Cheng, Y.: Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser. Adv. Photonics 4(3), 036001 (2022)

DOI

149
Lee, Y.S., Kim, G.D., Kim, W.J., Lee, S.S., Lee, W.G., Steier, W.H.: Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices. Opt. Lett. 36(7), 1119–1121 (2011)

DOI

150
Chen, L., Xu, Q., Wood, M.G., Reano, R.M.: Hybrid silicon and lithium niobate electro-optical ring modulator. Optica 1(2), 112–118 (2014)

DOI

151
Wang, C., Zhang, M., Stern, B., Lipson, M., Lončar, M.: Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26(2), 1547–1555 (2018)

DOI

152
Mahmoud, M., Cai, L., Bottenfield, C., Piazza, G.: Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform. IEEE Photonics J. 10(1), 1–10 (2018)

DOI

153
Li, M., Ling, J., He, Y., Javid, U.A., Xue, S., Lin, Q.: Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun. 11(1), 4123 (2020)

DOI

154
Pan, B., Cao, H., Huang, Y., Wang, Z., Chen, K., Li, H., Yu, Z., Dai, D.: Compact electro-optic modulator on lithium niobate. Photon. Res. 10(3), 697–702 (2022)

DOI

155
Wang, J., Bo, F., Wan, S., Li, W., Gao, F., Li, J., Zhang, G., Xu, J.: High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt. Express 23(18), 23072–23078 (2015)

DOI

156
Fang, Z., Luo, H., Lin, J., Wang, M., Zhang, J., Wu, R., Zhou, J., Chu, W., Lu, T., Cheng, Y.: Efficient electro-optical tuning of an optical frequency microcomb on a monolithically integrated high-Q lithium niobate microdisk. Opt. Lett. 44(24), 5953–5956 (2019)

DOI

157
Wang, T.J., Peng, G.L., Chan, M.Y., Chen, C.H.: On-chip optical microresonators with high electro-optic tuning efficiency. J. Lightwave Technol. 38(7), 1851–1857 (2020)

DOI

158
Krasnokutska, I., Tambasco, J.J., Peruzzo, A.: Tunable large free spectral range microring resonators in lithium niobate on insulator. Sci. Rep. 9(1), 11086 (2019)

DOI

159
Feng, H., Zhang, K., Sun, W., Ren, Y., Zhang, Y., Zhang, W., Wang, C.: Ultra-high-linearity integrated lithium niobate electro-optic modulators. Photon. Res. 10(10), 2366–2373 (2022)

DOI

160
Xue, Y., Gan, R., Chen, K., Chen, G., Ruan, Z., Zhang, J., Liu, J., Dai, D., Guo, C., Liu, L.: Breaking the bandwidth limit of a high-quality-factor ring modulator based on thin-film lithium niobate. Optica 9(10), 1131–1137 (2022)

DOI

161
Bahadori, M., Goddard, L.L., Gong, S.: Fundamental electrooptic limitations of thin-film lithium niobate microring modulators. Opt. Express 28(9), 13731–13749 (2020)

DOI

162
Pan, B., Liu, H., Xu, H., Huang, Y., Li, H., Yu, Z., Liu, L., Shi, Y., Dai, D.: Ultra-compact lithium niobate microcavity electrooptic modulator beyond 110 GHz. Chip 1(4), 100029 (2022)

DOI

163
Yu, M., Wang, C., Zhang, M., Lončar, M.: Chip-based lithium-niobate frequency combs. IEEE Photonics Technol. Lett. 31(23), 1894–1897 (2019)

DOI

164
Parriaux, A., Hammani, K., Millot, G.: Electro-optic frequency combs. Adv. Opt. Photonics 12(1), 223–287 (2020)

DOI

165
Sun, H., Khalil, M., Wang, Z., Chen, L.R.: Recent progress in integrated electro-optic frequency comb generation. J. Semicond. 42(4), 041301 (2021)

DOI

166
Hermans, A., Gasse, K.V., Kuyken, B.: On-chip optical comb sources. APL Photonics 7(10), 100901 (2022)

DOI

167
Sun, Y., Wu, J., Tan, M., Xu, X., Li, Y., Morandotti, R., Mitchell, A., Moss, D.J.: Applications of optical microcombs. Adv. Opt. Photonics 15(1), 86–175 (2023)

DOI

168
Liu, P., Ren, L., Wen, H., Shi, L., Zhang, X.: Progress in integrated electro-optic frequency combs. Hongwai Yu Jiguang Gongcheng 51(5), 20220381 (2022). (Invited)

DOI

169
Zhuang, R., Ni, K., Wu, G., Hao, T., Lu, L., Li, Y., Zhou, Q.: Electro-optic frequency combs: theory, characteristics, and applications. Laser Photonics Rev. 17(6), 2200353 (2023)

DOI

170
Rueda, A., Sedlmeir, F., Kumari, M., Leuchs, G., Schwefel, H.G.L.: Resonant electro-optic frequency comb. Nature 568(7752), 378–381 (2019)

DOI

171
Buscaino, B., Zhang, M., Loncar, M., Kahn, J.M.: Design of efficient resonator-enhanced electro-optic frequency comb generators. J. Lightwave Technol. 38(6), 1400–1413 (2020)

DOI

172
Hu, Y., Reimer, C., Shams-Ansari, A., Zhang, M., Loncar, M.: Realization of high-dimensional frequency crystals in electrooptic microcombs. Optica 7(9), 1189–1194 (2020)

DOI

173
Xu, M., He, M., Zhu, Y., Liu, L., Chen, L., Yu, S., Cai, X.: Integrated thin film lithium niobate Fabry–Perot modulator. Chin. Opt. Lett. 19(6), 060003 (2021)

DOI

174
Zhang, M., Buscaino, B., Wang, C., Shams-Ansari, A., Reimer, C., Zhu, R., Kahn, J.M., Lončar, M.: Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568(7752), 373–377 (2019)

DOI

175
Hu, Y., Yu, M., Buscaino, B., Sinclair, N., Zhu, D., Cheng, R., Shams-Ansari, A., Shao, L., Zhang, M., Kahn, J.M., Lončar, M.: High-efficiency and broadband on-chip electro-optic frequency comb generators. Nat. Photonics 16(10), 679–685 (2022)

DOI

176
Gong, Z., Shen, M., Lu, J., Surya, J.B., Tang, H.X.: Monolithic Kerr and electro-optic hybrid microcombs. Optica 9(9), 1060–1065 (2022)

DOI

177
Xiong, C., Pernice, W.H.P., Sun, X., Schuck, C., Fong, Y., Tang, H.X.: Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J. Phys. 14(9), 095014 (2012)

DOI

178
Jung, H., Tang, H.X.: Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion. Nanophotonics 5(2), 263–271 (2016)

DOI

179
Liu, X., Gong, Z., Bruch, A.W., Surya, J.B., Lu, J., Tang, H.X.: Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing. Nat. Commun. 12(1), 5428 (2021)

DOI

180
Watanabe, N., Kimoto, T., Suda, J.: The temperature dependence of the refractive indices of GaN and AlN from room temperature up to 515 °C. J. Appl. Phys. 104(10), 106101 (2008)

DOI

181
Gaeta, A.L., Lipson, M., Kippenberg, T.J.: Photonic-chip-based frequency combs. Nat. Photonics 13(3), 158–169 (2019)

DOI

182
Pernice, W.H.P., Xiong, C., Tang, H.X.: High Q micro-ring resonators fabricated from polycrystalline aluminum nitride films for near infrared and visible photonics. Opt. Express 20(11), 12261–12269 (2012)

DOI

183
Yan, J., Wang, J., Cong, P., Sun, L., Liu, N., Liu, Z., Zhao, C., Li, J.: Improved performance of UV-LED by p-AlGaN with graded composition. Phys. Status Solidi C 8(2), 461–463 (2011)

DOI

184
Fan, R., Hao, Z., Chen, Z., Hu, J., Wang, L.: High quality AlN with a thin interlayer grown on a sapphire substrate by plasma-assisted molecular beam epitaxy. Chin. Phys. Lett. 27(6), 068101 (2010)

DOI

185
Shin, W.J., Wang, P., Sun, Y., Paul, S., Liu, J., Kira, M., Soltani, M., Mi, Z.: Enhanced Pockels effect in AlN microring resonator modulators based on AlGaN/AlN multiple quantum wells. ACS Photonics 10(1), 34–42 (2023)

DOI

186
Xiong, C., Pernice, W.H.P., Tang, H.X.: Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. Nano Lett. 12(7), 3562–3568 (2012)

DOI

187
Zhu, S., Lo, G.Q.: Aluminum nitride electro-optic phase shifter for backend integration on silicon. Opt. Express 24(12), 12501–12506 (2016)

DOI

188
Fan, L., Zou, C.L., Cheng, R., Guo, X., Han, X., Gong, Z., Wang, S., Tang, H.X.: Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits. Sci. Adv. 4(8), eaar4994 (2018)

DOI

189
Surya, J.B., Guo, X., Zou, C.L., Tang, H.X.: Control of second-harmonic generation in doubly resonant aluminum nitride microrings to address a rubidium two-photon clock transition. Opt. Lett. 43(11), 2696–2699 (2018)

DOI

190
Bruch, A.W., Liu, X., Guo, X., Surya, J.B., Gong, Z., Zhang, L., Wang, J., Yan, J., Tang, H.X.: 17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators. Appl. Phys. Lett. 113(13), 131102 (2018)

DOI

191
Guo, X., Zou, C.L., Jung, H., Tang, H.X.: On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes. Phys. Rev. Lett. 117(12), 123902 (2016)

DOI

192
Guo, X., Zou, C.L., Schuck, C., Jung, H., Cheng, R., Tang, H.X.: Parametric down-conversion photon-pair source on a nanophotonic chip. Light Sci. Appl. 6(5), e16249 (2016)

DOI

193
Bruch, A.W., Liu, X., Surya, J.B., Zou, C.L., Tang, H.X.: Onchip χ(2) microring optical parametric oscillator. Optica 6(10), 1361–1366 (2019)

DOI

194
Wang, J.Q., Yang, Y.H., Li, M., Hu, X.X., Surya, J.B., Xu, X.B., Dong, C.H., Guo, G.C., Tang, H.X., Zou, C.L.: Efficient frequency conversion in a degenerate χ(2) microresonator. Phys. Rev. Lett. 126(13), 133601 (2021)

DOI

195
Szabados, J., Sturman, B., Breunig, I.: Frequency comb generation threshold via second-harmonic excitation in χ(2) optical microresonators. APL Photonics 5(11), 116102 (2020)

DOI

196
Puzyrev, D.N., Pankratov, V.V., Villois, A., Skryabin, D.V.: Bright-soliton frequency combs and dressed states in χ(2) microresonators. Phys. Rev. A 104(1), 013520 (2021)

DOI

197
Lin, G., Song, Q.: Kerr frequency comb interaction with Raman, Brillouin, and second order nonlinear effects. Laser Photonics Rev. 16(1), 2100184 (2022)

DOI

198
Jung, H., Guo, X., Zhu, N., Papp, S.B., Diddams, S.A., Tang, H.X.: Phase-dependent interference between frequency doubled comb lines in a χ(2) phase-matched aluminum nitride microring. Opt. Lett. 41(16), 3747–3750 (2016)

DOI

199
Jung, H., Stoll, R., Guo, X., Fischer, D., Tang, H.X.: Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator. Optica 1(6), 396–399 (2014)

DOI

200
Liu, X., Sun, C., Xiong, B., Wang, L., Wang, J., Han, Y., Hao, Z., Li, H., Luo, Y., Yan, J., Wei, T., Zhang, Y., Wang, J.: Generation of multiple near-visible comb lines in an AlN microring via χ(2) and χ(3) optical nonlinearities. Appl. Phys. Lett. 113(17), 171106 (2018)

DOI

201
Guo, X., Zou, C.L., Jung, H., Gong, Z., Bruch, A., Jiang, L., Tang, H.X.: Efficient generation of a near-visible frequency comb via Cherenkov-like radiation from a Kerr microcomb. Phys. Rev. Appl. 10(1), 014012 (2018)

DOI

202
Gong, Z., Bruch, A.W., Yang, F., Li, M., Lu, J., Surya, J.B., Zou, C.L., Tang, H.X.: Quadratic strong coupling in AlN Kerr cavity solitons. Opt. Lett. 47(4), 746–749 (2022)

DOI

203
Bruch, A.W., Liu, X., Gong, Z., Surya, J.B., Li, M., Zou, C.L., Tang, H.X.: Pockels soliton microcomb. Nat. Photonics 15(1), 21–27 (2021)

DOI

204
Guo, X., Zou, C.L., Jiang, L., Tang, H.X.: All-optical control of linear and nonlinear energy transfer via the zeno effect. Phys. Rev. Lett. 120(20), 203902 (2018)

DOI

205
Cui, C., Zhang, L., Fan, L.: In situ control of effective Kerr non-linearity with Pockels integrated photonics. Nat. Phys. 18(5), 497–501 (2022)

DOI

206
Wang, J.Q., Yang, Y.H., Li, M., Zhou, H., Xu, X.B., Zhang, J.Z., Dong, C.H., Guo, G.C., Zou, C.L.: Synthetic five-wave mixing in an integrated microcavity for visible-telecom entanglement generation. Nat. Commun. 13(1), 6223 (2022)

DOI

207
Wu, I.J., Guo, G.Y.: Second-harmonic generation and linear electro-optical coefficients of SiC polytypes and nanotubes. Phys. Rev. B Condens. Matter Mater. Phys. 78(3), 035447 (2008)

DOI

208
Yan, F.F., Yi, A.L., Wang, J.F., Li, Q., Yu, P., Zhang, J.X., Gali, A., Wang, Y., Xu, J.S., Ou, X., Li, C.F., Guo, G.C.: Room-temperature coherent control of implanted defect spins in silicon carbide. npj Quantum Inf. 6(1), 38 (2020)

DOI

209
Skryabin, D.V., Pankratov, V.V., Villois, A., Puzyrev, D.N.: Photon–photon polaritons in χ(2) microresonators. Phys. Rev. Res. 3(1), L012017 (2021)

DOI

210
Babin, C., Stöhr, R., Morioka, N., Linkewitz, T., Steidl, T., Wörnle, R., Liu, D., Hesselmeier, E., Vorobyov, V., Denisenko, A., Hentschel, M., Gobert, C., Berwian, P., Astakhov, G.V., Knolle, W., Majety, S., Saha, P., Radulaski, M., Son, N.T., Ul-Hassan, J., Kaiser, F., Wrachtrup, J.: Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence. Nat. Mater. 21(1), 67–73 (2022)

DOI

211
Castelletto, S., Peruzzo, A., Bonato, C., Johnson, B.C., Radulaski, M., Ou, H., Kaiser, F., Wrachtrup, J.: Silicon carbide photonics bridging quantum technology. ACS Photonics 9(5), 1434–1457 (2022)

DOI

212
Fan, T., Moradinejad, H., Wu, X., Eftekhar, A.A., Adibi, A.: High-Q integrated photonic microresonators on 3C-SiC-on-insulator (SiCOI) platform. Opt. Express 26(20), 25814–25826 (2018)

DOI

213
Zheng, Y., Pu, M., Yi, A., Chang, B., You, T., Huang, K., Kamel, A.N., Henriksen, M.R., Jørgensen, A.A., Ou, X., Ou, H.: High-quality factor, high-confinement microring resonators in 4H-silicon carbide-on-insulator. Opt. Express 27(9), 13053–13060 (2019)

DOI

214
Wu, X., Fan, T., Eftekhar, A.A., Hosseinnia, A.H., Adibi, A.: High-Q ultrasensitive integrated photonic sensors based on slot-ring resonator on a 3C-SiC-on-insulator platform. Opt. Lett. 46(17), 4316–4319 (2021)

DOI

215
Fan, T., Wu, X., Eftekhar, A.A., Bosi, M., Moradinejad, H., Woods, E.V., Adibi, A.: High-quality integrated microdisk resonators in the visible-to-near-infrared wavelength range on a 3C-silicon carbide-on-insulator platform. Opt. Lett. 45(1), 153–156 (2020)

DOI

216
Wang, C., Li, J., Yi, A., Fang, Z., Zhou, L., Wang, Z., Niu, R., Chen, Y., Zhang, J., Cheng, Y., Liu, J., Dong, C.H., Ou, X.: Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform. Light Sci. Appl. 11(1), 341 (2022)

DOI

217
Tang, X., Irvine, K.G., Zhang, D., Spencer, M.G.: Linear electro-optic effect in cubic silicon carbide. Appl. Phys. Lett. 59(16), 1938–1939 (1991)

DOI

218
Wu, X., Fan, T., Eftekhar, A.A., Adibi, A.: High-Q microresonators integrated with microheaters on a 3C-SiC-on-insulator platform. Opt. Lett. 44(20), 4941–4944 (2019)

DOI

219
Wang, R., Li, J., Cai, L., Li, Q.: Investigation of the electrooptic effect in high-Q 4H-SiC microresonators. Opt. Lett. 48(6), 1482–1485 (2023)

DOI

220
Fan, T., Wu, X., Vangapandu, S.R.M., Hosseinnia, A.H., Eftekhar, A.A., Adibi, A.: Racetrack microresonator based electro-optic phase shifters on a 3C silicon-carbide-on-insulator platform. Opt. Lett. 46(9), 2135–2138 (2021)

DOI

221
Yamada, S., Song, B.S., Jeon, S., Upham, J., Tanaka, Y., Asano, T., Noda, S.: Second-harmonic generation in a siliconcarbide-based photonic crystal nanocavity. Opt. Lett. 39(7), 1768–1771 (2014)

DOI

222
Song, B.S., Asano, T., Jeon, S., Kim, H., Chen, C., Kang, D.D., Noda, S.: Ultrahigh-Q photonic crystal nanocavities based on 4H silicon carbide. Optica 6(8), 991–995 (2019)

DOI

223
Kim, H., Noda, S., Song, B.S., Asano, T.: Determination of nonlinear optical efficiencies of ultrahigh-Q photonic crystal nanocavities with structural imperfections. ACS Photonics 8(10), 2839–2845 (2021)

DOI

224
Lukin, D.M., Dory, C., Guidry, M.A., Yang, K.Y., Mishra, S.D., Trivedi, R., Radulaski, M., Sun, S., Vercruysse, D., Ahn, G.H., Vučković, J.: 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photonics 14(5), 330–334 (2020)

DOI

225
Li, D., Jiang, K., Sun, X., Guo, C.: AlGaN photonics: recent advances in materials and ultraviolet devices. Adv. Opt. Photonics 10(1), 43–110 (2018)

DOI

226
Zhao, L., Liu, C., Wang, K.: Progress of GaN-based optoelectronic devices integrated with optical resonances. Small 18(14), e2106757 (2022)

DOI

227
Zhu, G., Qin, F., Li, X., Sun, Y., Gao, F., Tian, M., Ji, B., Wang, Y.: Research progress of gallium nitride microdisk cavity laser. Front. Mater. 9, 845885 (2022)

DOI

228
Bruch, A.W., Xiong, K., Jung, H., Guo, X., Zhang, C., Han, J., Tang, H.X.: Electrochemically sliced low loss AlGaN optical microresonators. Appl. Phys. Lett. 110(2), 021111 (2017)

DOI

229
Dharanipathy, U., VicoTriviño, N., Yan, C., Diao, Z., Carlin, J.F., Grandjean, N., Houdré, R.: Near-infrared characterization of gallium nitride photonic-crystal waveguides and cavities. Opt. Lett. 37(22), 4588–4590 (2012)

DOI

230
Stolz, A., Cho, E., Dogheche, E., Androussi, Y., Troadec, D., Pavlidis, D., Decoster, D.: Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy. Appl. Phys. Lett. 98(16), 161903 (2011)

DOI

231
Westreich, O., Katz, M., Paltiel, Y., Ternyak, O., Sicron, N.: Low propagation loss in GaN/AlGaN-based ridge waveguides. Phys. Status Solidi A Appl. Mater. Sci. 212(5), 1043–1048 (2015)

DOI

232
Bruch, A.W., Xiong, C., Leung, B., Poot, M., Han, J., Tang, H.X.: Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films. Appl. Phys. Lett. 107(14), 141113 (2015)

DOI

233
Stassen, E., Pu, M., Semenova, E., Zavarin, E., Lundin, W., Yvind, K.: High-confinement gallium nitride-on-sapphire waveguides for integrated nonlinear photonics. Opt. Lett. 44(5), 1064–1067 (2019)

DOI

234
Mohamed, M.S., Simbula, A., Carlin, J.F., Minkov, M., Gerace, D., Savona, V., Grandjean, N., Galli, M., Houdré, R.: Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon. APL Photonics 2(3), 031301 (2017)

DOI

235
Vyas, K., Espinosa, D.H.G., Hutama, D., Jain, S.K., Mahjoub, R., Mobini, E., Awan, K.M., Lundeen, J., Dolgaleva, K.: Group III–V semiconductors as promising nonlinear integrated photonic platforms. Adv. Phys. X 7(1), 2097020 (2022)

DOI

236
Mitchell, M., Hryciw, A.C., Barclay, P.E.: Cavity optomechanics in gallium phosphide microdisks. Appl. Phys. Lett. 104(14), 141104 (2014)

DOI

237
Schneider, K., Welter, P., Baumgartner, Y., Hahn, H., Czornomaz, L., Seidler, P.: Gallium phosphide-on-silicon dioxide photonic devices. J. Lightwave Technol. 36(14), 2994–3002 (2018)

DOI

238
Billet, M., Reis, L., Léger, Y., Cornet, C., Raineri, F., Sagnes, I., Pantzas, K., Beaudoin, G., Roelkens, G., Leo, F., Kuyken, B.: Gallium phosphide-on-insulator integrated photonic structures fabricated using micro-transfer printing. Opt. Mater. Express 12(9), 3731–3737 (2022)

DOI

239
Hönl, S., Popoff, Y., Caimi, D., Beccari, A., Kippenberg, T.J., Seidler, P.: Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity. Nat. Commun. 13(1), 2065 (2022)

DOI

240
Rivoire, K., Lin, Z., Hatami, F., Masselink, W.T., Vucković, J.: Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power. Opt. Express 17(25), 22609–22615 (2009)

DOI

241
Rivoire, K., Lin, Z., Hatami, F., Vučković, J.: Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities. Appl. Phys. Lett. 97(4), 043103 (2010)

DOI

242
Lake, D.P., Mitchell, M., Jayakumar, H., dos Santos, L.F., Curic, D., Barclay, P.E.: Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks. Appl. Phys. Lett. 108(3), 031109 (2016)

DOI

243
Logan, A.D., Gould, M., Schmidgall, E.R., Hestroffer, K., Lin, Z., Jin, W., Majumdar, A., Hatami, F., Rodriguez, A.W., Fu, K.C.: 400%/W second harmonic conversion efficiency in 14 μm-diameter gallium phosphide-on-oxide resonators. Opt. Express 26(26), 33687–33699 (2018)

DOI

244
Dietrich, C.P., Fiore, A., Thompson, M.G., Kamp, M., Höfling, S.: GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits. Laser Photonics Rev. 10(6), 870–894 (2016)

DOI

245
Xie, W., Xiang, C., Chang, L., Jin, W., Peters, J., Bowers, J.E.: Silicon-integrated nonlinear III–V photonics. Photon. Res. 10(2), 535–541 (2022)

DOI

246
Pu, M., Ottaviano, L., Semenova, E., Yvind, K.: Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3(8), 823–826 (2016)

DOI

247
Zheng, Y., Pu, M., Sahoo, H.K., Semenova, E., Yvind, K.: High-quality-factor AlGaAs-on-sapphire microring resonators. J. Lightwave Technol. 37(3), 868–874 (2019)

DOI

248
Xie, W., Chang, L., Shu, H., Norman, J.C., Peters, J.D., Wang, X., Bowers, J.E.: Ultrahigh-Q AlGaAs-on-insulator microresonators for integrated nonlinear photonics. Opt. Express 28(22), 32894–32906 (2020)

DOI

249
Steiner, T.J., Castro, J.E., Chang, L., Dang, Q., Xie, W., Norman, J., Bowers, J.E., Moody, G.: Ultrabright entangled-photon-pair generation from an AlGaAs-on-insulator microring resonator. PRX Quantum 2(1), 010337 (2021)

DOI

250
Kim, C., Ye, C., Zheng, Y., Semenova, E., Yvind, K., Pu, M.: Design and fabrication of AlGaAs-on-insulator microring resonators for nonlinear photonics. IEEE J. Sel. Top. Quantum Electron. 29(1), 1–13 (2022)

DOI

251
Shu, H., Chang, L., Tao, Y., Shen, B., Xie, W., Jin, M., Netherton, A., Tao, Z., Zhang, X., Chen, R., Bai, B., Qin, J., Yu, S., Wang, X., Bowers, J.E.: Microcomb-driven silicon photonic systems. Nature 605(7910), 457–463 (2022)

DOI

252
Bai, B., Yang, Q., Shu, H., Chang, L., Yang, F., Shen, B., Tao, Z., Wang, J., Xu, S., Xie, W., Zou, W., Hu, W., Bowers, J.E., Wang, X.: Microcomb-based integrated photonic processing unit. Nat. Commun. 14(1), 66 (2023)

DOI

253
Yang, Z., Sipe, J.E.: Generating entangled photons via enhanced spontaneous parametric downconversion in AlGaAs microring resonators. Opt. Lett. 32(22), 3296–3298 (2007)

DOI

254
Yang, Z., Chak, P., Bristow, A.D., van Driel, H.M., Iyer, R., Aitchison, J.S., Smirl, A.L., Sipe, J.E.: Enhanced second-harmonic generation in AlGaAs microring resonators. Opt. Lett. 32(7), 826–828 (2007)

DOI

255
Li, L., Sun, J., Chen, T.: Second-harmonic generation in AlGaAs/AlxOy artificial birefringent microring resonators. IEEE Photonics Technol. Lett. 23(8), 465–467 (2011)

DOI

256
Gandomkar, M., Ahmadi, V.: Thermo-optical switching enhanced with second harmonic generation in microring resonators. Opt. Lett. 36(19), 3825–3827 (2011)

DOI

257
Mariani, S., Andronico, A., Mauguin, O., Lemaître, A., Favero, I., Ducci, S., Leo, G.: AlGaAs microdisk cavities for second-harmonic generation. Opt. Lett. 38(19), 3965–3968 (2013)

DOI

258
Mariani, S., Andronico, A., Lemaître, A., Favero, I., Ducci, S., Leo, G.: Second-harmonic generation in AlGaAs microdisks in the telecom range. Opt. Lett. 39(10), 3062–3065 (2014)

DOI

259
Stassen, E., Galili, M., Oxenløwe, L.K., Yvind, K.: Ultra-low power all-optical wavelength conversion of high-speed data signals in high-confinement AlGaAs-on-insulator microresonators. APL Photonics 4(10), 100804 (2019)

DOI

260
Kuo, P.S., Bravo-Abad, J., Solomon, G.S.: Second-harmonic generation using 4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity. Nat. Commun. 5(1), 3109 (2014)

DOI

261
Rivoire, K., Buckley, S., Vučković, J.: Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion. Opt. Express 19(22), 22198–22207 (2011)

DOI

262
Roland, I., Borne, A., Ravaro, M., De Oliveira, R., Suffit, S., Filloux, P., Lemaître, A., Favero, I., Leo, G.: Frequency doubling and parametric fluorescence in a four-port aluminum gallium arsenide photonic chip. Opt. Lett. 45(10), 2878–2881 (2020)

DOI

263
Chang, L., Boes, A., Pintus, P., Peters, J.D., Kennedy, M.J., Guo, X., Volet, N., Yu, S., Papp, S.B., Bowers, J.E.: Strong frequency conversion in heterogeneously integrated GaAs resonators. APL Photonics 4(3), 036103 (2019)

DOI

264
Chiles, J., Nader, N., Stanton, E.J., Herman, D., Moody, G., Zhu, J., Connor Skehan, J., Guha, B., Kowligy, A., Gopinath, J.T., Srinivasan, K., Diddams, S.A., Coddington, I., Newbury, N.R., Shainline, J.M., Nam, S.W., Mirin, R.P.: Multifunctional integrated photonics in the mid-infrared with suspended AlGaAs on silicon. Optica 6(9), 1246–1254 (2019)

DOI

265
Chang, L., Xie, W., Shu, H., Yang, Q.F., Shen, B., Boes, A., Peters, J.D., Jin, W., Xiang, C., Liu, S., Moille, G., Yu, S.P., Wang, X., Srinivasan, K., Papp, S.B., Vahala, K., Bowers, J.E.: Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun. 11(1), 1331 (2020)

DOI

266
Chang, L., Boes, A., Pintus, P., Xie, W., Peters, J.D., Kennedy, M.J., Jin, W., Guo, X.W., Yu, S.P., Papp, S.B., Bowers, J.E.: Low loss (Al)GaAs on an insulator waveguide platform. Opt. Lett. 44(16), 4075–4078 (2019)

DOI

267
Parisi, M., Morais, N., Ricciardi, I., Mosca, S., Hansson, T., Wabnitz, S., Leo, G., Rosa, M.D.: AlGaAs waveguide microresonators for efficient generation of quadratic frequency combs. J. Opt. Soc. Am. B 34(9), 1842–1847 (2017)

DOI

268
Monat, C., Su, Y.: Hybrid photonics beyond silicon. APL Photonics 5(2), 020402 (2020)

DOI

269
Kaur, P., Boes, A., Ren, G., Nguyen, T.G., Roelkens, G., Mitchell, A.: Hybrid and heterogeneous photonic integration. APL Photonics 6(6), 061102 (2021)

DOI

270
Liu, X., Yan, X., Liu, Y., Li, H., Chen, Y., Chen, X.: Tunable single-mode laser on thin film lithium niobate. Opt. Lett. 46(21), 5505–5508 (2021)

DOI

271
Op de Beeck, C., Mayor, F.M., Cuyvers, S., Poelman, S., Herrmann, J.F., Atalar, O., McKenna, T.P., Haq, B., Jiang, W., Witmer, J.D., Roelkens, G., Safavi-Naeini, A.H., Van Laer, R., Kuyken, B.: III/V-on-lithium niobate amplifiers and lasers. Optica 8(10), 1288–1289 (2021)

DOI

272
Li, M., Chang, L., Wu, L., Staffa, J., Ling, J., Javid, U.A., Xue, S., He, Y., Lopez-Rios, R., Morin, T.J., Wang, H., Shen, B., Zeng, S., Zhu, L., Vahala, K.J., Bowers, J.E., Lin, Q.: Integrated Pockels laser. Nat. Commun. 13(1), 5344 (2022)

DOI

273
Shams-Ansari, A., Renaud, D., Cheng, R., Shao, L., He, L., Zhu, D., Yu, M., Grant, H.R., Johansson, L., Zhang, M., Lončar, M.: Electrically pumped laser transmitter integrated on thin-film lithium niobate. Optica 9(4), 408–411 (2022)

DOI

274
Komljenovic, T., Davenport, M., Hulme, J., Liu, A.Y., Santis, C.T., Spott, A., Srinivasan, S., Stanton, E.J., Zhang, C., Bowers, J.E.: Heterogeneous silicon photonic integrated circuits. J. Lightwave Technol. 34(1), 20–35 (2016)

DOI

275
Komljenovic, T., Huang, D., Pintus, P., Tran, M.A., Davenport, M.L., Bowers, J.E.: Photonic integrated circuits using heterogeneous integration on silicon. Proc. IEEE 106(12), 2246–2257 (2018)

DOI

276
Elshaari, A.W., Pernice, W., Srinivasan, K., Benson, O., Zwiller, V.: Hybrid integrated quantum photonic circuits. Nat. Photonics 14(5), 285–298 (2020)

DOI

277
Krastanov, S., Heuck, M., Shapiro, J.H., Narang, P., Englund, D.R., Jacobs, K.: Room-temperature photonic logical qubits via second-order nonlinearities. Nat. Commun. 12(1), 191 (2021)

DOI

278
Wang, C., Li, Z., Kim, M.H., Xiong, X., Ren, X.F., Guo, G.C., Yu, N., Lončar, M.: Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun. 8(1), 2098 (2017)

DOI

279
Ciattoni, A., Marini, A., Rizza, C., Conti, C.: Phase-matching-free parametric oscillators based on two-dimensional semiconductors. Light Sci. Appl. 7(1), 5 (2018)

DOI

Outlines

/