RESEARCH ARTICLE

Optical engineering of infrared PbS CQD photovoltaic cells for wireless optical power transfer systems

  • Mengqiong Zhu 1 ,
  • Yuanbo Zhang 2 ,
  • Shuaicheng Lu 2 ,
  • Zijun Wang 2 ,
  • Junbing Zhou 1 ,
  • Wenkai Ma 2 ,
  • Ruinan Zhu 1 ,
  • Guanyuan Chen 1 ,
  • Jianbing Zhang 2 ,
  • Liang Gao 2 ,
  • Jiancan Yu , 1 ,
  • Pingqi Gao 1 ,
  • Jiang Tang , 2
Expand
  • 1. School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
  • 2. Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
yujc3@mail.sysu.edu.cn
jtang@mail.hust.edu.cn

Received date: 12 Mar 2023

Accepted date: 13 Apr 2023

Published date: 15 Jun 2023

Copyright

2023 The Author(s) 2023

Abstract

Infrared photovoltaic cells (IRPCs) have attracted considerable attention for potential applications in wireless optical power transfer (WOPT) systems. As an efficient fiber-integrated WOPT system typically uses a 1550 nm laser beam, it is essential to tune the peak conversion efficiency of IRPCs to this wavelength. However, IRPCs based on lead sulfide (PbS) colloidal quantum dots (CQDs) with an excitonic peak of 1550 nm exhibit low short circuit current (Jsc) due to insufficient absorption under monochromatic light illumination. Here, we propose comprehensive optical engineering to optimize the device structure of IRPCs based on PbS CQDs, for 1550 nm WOPT systems. The absorption by the device is enhanced by improving the transmittance of tin-doped indium oxide (ITO) in the infrared region and by utilizing the optical resonance effect in the device. Therefore, the optimized device exhibited a high short circuit current density of 37.65 mA/cm2 under 1 sun (AM 1.5G) solar illumination and 11.91 mA/cm2 under 1550 nm illumination 17.3 mW/cm2. Furthermore, the champion device achieved a record high power conversion efficiency (PCE) of 7.17% under 1 sun illumination and 10.29% under 1550 nm illumination. The PbS CQDs IRPCs under 1550 nm illumination can even light up a liquid crystal display (LCD), demonstrating application prospects in the future.

Cite this article

Mengqiong Zhu , Yuanbo Zhang , Shuaicheng Lu , Zijun Wang , Junbing Zhou , Wenkai Ma , Ruinan Zhu , Guanyuan Chen , Jianbing Zhang , Liang Gao , Jiancan Yu , Pingqi Gao , Jiang Tang . Optical engineering of infrared PbS CQD photovoltaic cells for wireless optical power transfer systems[J]. Frontiers of Optoelectronics, 2023 , 16(2) : 15 . DOI: 10.1007/s12200-023-00069-0

1
Javed, N., Nguyen, N.L., Ali Naqvi, S.F., Ha, J.: Long-range wireless optical power transfer system using an EDFA. Opt. Express 30(19), 33767–33779 (2022)

DOI

2
Kim, S.M., Choi, J., Jung, H.: Experimental demonstration of underwater optical wireless power transfer using a laser diode. Chin. Opt. Lett.16(8), 080101 (2018)

DOI

3
Kim, S.M., Rhee, D.H.: Experimental demonstration of optical wireless power transfer with a DC-to-DC transfer efficiency of 12.1%. Opt. Eng.57(1), 086108 (2018)

DOI

4
Koonen, T., Mekonnen, K.A., Huijskens, F., Pham, N.Q., Cao, Z., Tangdiongga, E.: Fully passive user localization for beamsteered high-capacity optical wireless communication system. J. Lit. Technol.38, 2842 (2020)

DOI

5
Kim, S.M., Park, H.: Optimization of optical wireless power transfer using near-infrared laser diodes. Chin. Opt. Lett.18(4), 042603 (2020)

DOI

6
Raavi, S., Arigong, B., Zhou, R., Jung, S., Jin, M., Zhang, H., Kim, H.: An optical wireless power transfer system for rapid charging. In: Proceedings of 2013 Tex. Symp. Wirel. Microw. Circuits Syst. WMCS, pp. 1–4 (2013)

DOI

7
Kong, M., Kang, C.H., Alkhazragi, O., Sun, X., Guo, Y., Sait, M., Holguin-Lerma, J.A., Ng, T.K., Ooi, B.S.: Survey of energyautonomous solar cell receivers for satellite–air–ground–ocean optical wireless communication. Prog. Quantum Electron. 74, 100300 (2020)

DOI

8
Xiong, M., Liu, Q., Liu, M., Wang, X., Deng, H.: Resonant beam communications with photovoltaic receiver for optical data and power transfer. IEEE Trans. Commun.68(5), 3033–3041 (2020)

DOI

9
Liu, M., Deng, H., Liu, Q., Zhou, J., Xiong, M., Yang, L., Giannakis, G.B.: Simultaneous mobile information and power transfer by resonant beam. IEEE Trans. Signal Process. 69, 2766–2778 (2021)

DOI

10
Ponnimbaduge Perera, T.D., Jayakody, D.N.K., Sharma, S.K., Chatzinotas, S., Li, J.: Simultaneous wireless information and power transfer (swipt): recent advances and future challenges. IEEE Comm. Surv. Tutor.20(1), 264–302 (2018)

DOI

11
Huang, C.M., Wijanto, E., Tseng, S.P., Liu, Y.H., Luo, Y.T., Lin, H.C., Cheng, H.C.: Implementation of a fiber-based resonant beam system for multiuser optical wireless information and power transfer. Opt. Commun. 486, 126778 (2021)

DOI

12
Fraas, L., Avery, J., Ballantyne, R., Daniels, W.: GaSb photovoltaic cells ready for space and the home. III-Vs Rev. 12, 22 (1999)

DOI

13
Tournet, J., Parola, S., Vauthelin, A., Montesdeoca Cardenes, D., Soresi, S., Martinez, F., Lu, Q., Cuminal, Y., Carrington, P.J., Décobert, J., Krier, A., Rouillard, Y., Tournié, E.: GaSbbased solar cells for multi-junction integration on Si substrates. Sol. Energy Mater. Sol. Cells 191, 444–450 (2019)

DOI

14
Tan, M., Ji, L., Wu, Y., Dai, P., Wang, Q., Li, K., Yu, T., Yu, Y., Lu, S., Yang, H.: Investigation of InGaAs thermophotovoltaic cells under blackbody radiation. Appl. Phys. Express7(9), 096601 (2014)

DOI

15
Hines, M.A., Scholes, G.D.: Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater.15(21), 1844–1849 (2003)

DOI

16
Liu, S., Li, M.Y., Xiong, K., Gao, J., Lan, X., Zhang, D., Gao, L., Zhang, J., Tang, J.: Efficient quantum dot infrared solar cells with enhanced low-energy photon conversion via optical engineering. Nano Res.16(2), 2392–2398 (2023)

DOI

17
Li, M., Chen, S., Zhao, X., Xiong, K., Wang, B., Shah, U.A., Gao, L., Lan, X., Zhang, J., Hsu, H.Y., Tang, J., Song, H.: Matching charge extraction contact for infrared PbS colloidal quantum dot solar cells. Small18(1), 2105495 (2022)

DOI

18
Xia, Y., Liu, S., Wang, K., Yang, X., Lian, L., Zhang, Z., He, J., Liang, G., Wang, S., Tan, M., Song, H., Zhang, D., Gao, J., Tang, J., Beard, M.C., Zhang, J.: Cation-exchange synthesis of highly monodisperse PbS quantum dots from ZnS nanorods for efficient infrared solar cells. Adv. Funct. Mater.30(4), 1907379 (2020)

DOI

19
Fan, J.Z., Andersen, N.T., Biondi, M., Todorović, P., Sun, B., Ouellette, O., Abed, J., Sagar, L.K., Choi, M., Hoogland, S., de Arquer, F.P.G., Sargent, E.H.: Mixed lead halide passivation of quantum dots. Adv. Mater.31(48), 1904304 (2019)

DOI

20
Li, M., Zhao, X., Zhang, A., Wang, B., Yang, Y., Xu, S., Hu, Q., Liang, G., Xiao, Z., Gao, L., Zhang, J., Hsu, H.Y., Song, H., Tang, J.: Organic ligand complementary passivation to colloidalquantum-dot surface enables efficient infrared solar cells. Chem. Eng. J. 455, 140961 (2023)

DOI

21
Baek, S., Molet, P., Choi, M., Biondi, M., Ouellette, O., Fan, J., Hoogland, S., García de Arquer, F.P., Mihi, A., Sargent, E.H.: Nanostructured back reflectors for efficient colloidal quantum-dot infrared optoelectronics. Adv. Mater.31(33), 1901745 (2019)

DOI

22
Ding, C., Wang, D., Liu, D., Li, H., Li, Y., Hayase, S., Sogabe, T., Masuda, T., Zhou, Y., Yao, Y., Zou, Z., Wang, R., Shen, Q.: Over 15% efficiency PbS quantum-dot solar cells by synergistic effects of three interface engineering: reducing nonradiative recombination and balancing charge carrier extraction. Adv. Energy Mater.12(35), 2201676 (2022)

DOI

23
Jo, J.W., Choi, J., García de Arquer, F.P., Seifitokaldani, A., Sun, B., Kim, Y., Ahn, H., Fan, J., Quintero-Bermudez, R., Kim, J., Choi, M.J., Baek, S.W., Proppe, A.H., Walters, G., Nam, D.H., Kelley, S., Hoogland, S., Voznyy, O., Sargent, E.H.: Acid-assisted ligand exchange enhances coupling in colloidal quantum dot solids. Nano Lett.18(7), 4417–4423 (2018)

DOI

24
Wang, H., Nakao, S., Miyashita, N., Oteki, Y., Giteau, M., Okada, Y., Takamoto, T., Saito, H., Magaino, S., Takagi, K., Hasegawa, T., Kubo, T., Kinoshita, T., Nakazaki, J., Segawa, H.: Spectral splitting solar cells constructed with InGaP/GaAs two-junction subcells and infrared PbS quantum dot/ZnO nanowire subcells. ACS Energy Lett.7(8), 2477–2485 (2022)

DOI

25
Fan, J.Z., Vafaie, M., Bertens, K., Sytnyk, M., Pina, J.M., Sagar, L.K., Ouellette, O., Proppe, A.H., Rasouli, A.S., Gao, Y., Baek, S.W., Chen, B., Laquai, F., Hoogland, S., Arquer, F.P.G., Heiss, W., Sargent, E.H.: Micron thick colloidal quantum dot solids. Nano Lett.20(7), 5284–5291 (2020)

DOI

26
Bi, Y., Bertran, A., Gupta, S., Ramiro, I., Pradhan, S., Christodoulou, S., Majji, S.N., Akgul, M.Z., Konstantatos, G.: Solution processed infrared- and thermo-photovoltaics based on 0.7 eV bandgap PbS colloidal quantum dots. Nanoscale11(3), 838–843 (2019)

DOI

27
Duan, J., Zhang, H., Tang, Q., He, B., Yu, L.: Recent advances in critical materials for quantum dot-sensitized solar cells: a review. J. Mater. Chem. A Mater. Energy Sustain.3(34), 17497–17510 (2015)

DOI

28
Jeong, K.S., Tang, J., Liu, H., Kim, J., Schaefer, A.W., Kemp, K., Levina, L., Wang, X., Hoogland, S., Debnath, R., Brzozowski, L., Sargent, E.H., Asbury, J.B.: Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. ACS Nano6(1), 89–99 (2012)

DOI

29
Liu, H., Zhong, H., Zheng, F., Xie, Y., Li, D., Wu, D., Zhou, Z., Sun, X.W., Wang, K.: Near-infrared lead chalcogenide quantum dots: synthesis and applications in light emitting diodes. Chin. Phys. B28(12), 128504 (2019)

DOI

30
Zhou, S., Liu, Z., Wang, Y., Lu, K., Yang, F., Gu, M., Xu, Y., Chen, S., Ling, X., Zhang, Y., Li, F., Yuan, J., Ma, W.: Towards scalable synthesis of high-quality PbS colloidal quantum dots for photovoltaic applications. J. Mater. Chem. C Mater. Opt. Electron. Devices7(6), 1575–1583 (2019)

DOI

31
Kagan, C.R., Murray, C.B.: Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol.10(12), 1013–1026 (2015)

DOI

32
Zabet-Khosousi, A., Dhirani, A.A.: Charge transport in nanoparticle assemblies. Chem. Rev.108(10), 4072–4124 (2008)

DOI

33
Choi, J.H., Fafarman, A.T., Oh, S.J., Ko, D.K., Kim, D.K., Diroll, B.T., Muramoto, S., Gillen, J.G., Murray, C.B., Kagan, C.R.: Bandlike transport in strongly coupled and doped quantum dot solids: a route to high-performance thin-film electronics. Nano Lett.12(5), 2631–2638 (2012)

DOI

34
Kawashima, T., Ezure, T., Okada, K., Matsui, H., Goto, K., Tanabe, N.: FTO/ITO double-layered transparent conductive oxide for dye-sensitized solar cells. J. Photochem. Photobiol. Chem. 164(1–3), 199–202 (2004)

DOI

35
Ge, C., Yang, E., Zhao, X., Yuan, C., Li, S., Dong, C., Ruan, Y., Fu, L., He, Y., Zeng, X., Song, H., Hu, B., Chen, C., Tang, J.: Efficient near-infrared PbS quantum dot solar cells employing hydrogenated In2O3 transparent electrode. Small18(44), 2203677 (2022)

DOI

36
Alam, M.J., Cameron, D.C.: Optical and electrical properties of transparent conductive ITO thin films deposited by sol–gel process. Thin Solid Films 377–378, 455–459 (2000)

DOI

37
Ellmer, K.: Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics6(12), 809–817 (2012)

DOI

38
Georgitzikis, E., Malinowski, P.E., Maes, J., Hadipour, A., Hens, Z., Heremans, P., Cheyns, D.: Optimization of charge carrier extraction in colloidal quantum dots short-wave infrared photodiodes through optical engineering. Adv. Funct. Mater.28(42), 1804502 (2018)

DOI

Outlines

/