Optical engineering of infrared PbS CQD photovoltaic cells for wireless optical power transfer systems
Mengqiong Zhu, Yuanbo Zhang, Shuaicheng Lu, Zijun Wang, Junbing Zhou, Wenkai Ma, Ruinan Zhu, Guanyuan Chen, Jianbing Zhang, Liang Gao, Jiancan Yu, Pingqi Gao, Jiang Tang
Optical engineering of infrared PbS CQD photovoltaic cells for wireless optical power transfer systems
Infrared photovoltaic cells (IRPCs) have attracted considerable attention for potential applications in wireless optical power transfer (WOPT) systems. As an efficient fiber-integrated WOPT system typically uses a 1550 nm laser beam, it is essential to tune the peak conversion efficiency of IRPCs to this wavelength. However, IRPCs based on lead sulfide (PbS) colloidal quantum dots (CQDs) with an excitonic peak of 1550 nm exhibit low short circuit current (Jsc) due to insufficient absorption under monochromatic light illumination. Here, we propose comprehensive optical engineering to optimize the device structure of IRPCs based on PbS CQDs, for 1550 nm WOPT systems. The absorption by the device is enhanced by improving the transmittance of tin-doped indium oxide (ITO) in the infrared region and by utilizing the optical resonance effect in the device. Therefore, the optimized device exhibited a high short circuit current density of 37.65 mA/cm2 under 1 sun (AM 1.5G) solar illumination and 11.91 mA/cm2 under 1550 nm illumination 17.3 mW/cm2. Furthermore, the champion device achieved a record high power conversion efficiency (PCE) of 7.17% under 1 sun illumination and 10.29% under 1550 nm illumination. The PbS CQDs IRPCs under 1550 nm illumination can even light up a liquid crystal display (LCD), demonstrating application prospects in the future.
Wireless optical power transfer / PbS CQDs / Photovoltaic cells / Optical engineering
[1] |
Javed, N., Nguyen, N.L., Ali Naqvi, S.F., Ha, J.: Long-range wireless optical power transfer system using an EDFA. Opt. Express 30(19), 33767–33779 (2022)
CrossRef
Google scholar
|
[2] |
Kim, S.M., Choi, J., Jung, H.: Experimental demonstration of underwater optical wireless power transfer using a laser diode. Chin. Opt. Lett.16(8), 080101 (2018)
CrossRef
Google scholar
|
[3] |
Kim, S.M., Rhee, D.H.: Experimental demonstration of optical wireless power transfer with a DC-to-DC transfer efficiency of 12.1%. Opt. Eng.57(1), 086108 (2018)
CrossRef
Google scholar
|
[4] |
Koonen, T., Mekonnen, K.A., Huijskens, F., Pham, N.Q., Cao, Z., Tangdiongga, E.: Fully passive user localization for beamsteered high-capacity optical wireless communication system. J. Lit. Technol.38, 2842 (2020)
CrossRef
Google scholar
|
[5] |
Kim, S.M., Park, H.: Optimization of optical wireless power transfer using near-infrared laser diodes. Chin. Opt. Lett.18(4), 042603 (2020)
CrossRef
Google scholar
|
[6] |
Raavi, S., Arigong, B., Zhou, R., Jung, S., Jin, M., Zhang, H., Kim, H.: An optical wireless power transfer system for rapid charging. In: Proceedings of 2013 Tex. Symp. Wirel. Microw. Circuits Syst. WMCS, pp. 1–4 (2013)
CrossRef
Google scholar
|
[7] |
Kong, M., Kang, C.H., Alkhazragi, O., Sun, X., Guo, Y., Sait, M., Holguin-Lerma, J.A., Ng, T.K., Ooi, B.S.: Survey of energyautonomous solar cell receivers for satellite–air–ground–ocean optical wireless communication. Prog. Quantum Electron. 74, 100300 (2020)
CrossRef
Google scholar
|
[8] |
Xiong, M., Liu, Q., Liu, M., Wang, X., Deng, H.: Resonant beam communications with photovoltaic receiver for optical data and power transfer. IEEE Trans. Commun.68(5), 3033–3041 (2020)
CrossRef
Google scholar
|
[9] |
Liu, M., Deng, H., Liu, Q., Zhou, J., Xiong, M., Yang, L., Giannakis, G.B.: Simultaneous mobile information and power transfer by resonant beam. IEEE Trans. Signal Process. 69, 2766–2778 (2021)
CrossRef
Google scholar
|
[10] |
Ponnimbaduge Perera, T.D., Jayakody, D.N.K., Sharma, S.K., Chatzinotas, S., Li, J.: Simultaneous wireless information and power transfer (swipt): recent advances and future challenges. IEEE Comm. Surv. Tutor.20(1), 264–302 (2018)
CrossRef
Google scholar
|
[11] |
Huang, C.M., Wijanto, E., Tseng, S.P., Liu, Y.H., Luo, Y.T., Lin, H.C., Cheng, H.C.: Implementation of a fiber-based resonant beam system for multiuser optical wireless information and power transfer. Opt. Commun. 486, 126778 (2021)
CrossRef
Google scholar
|
[12] |
Fraas, L., Avery, J., Ballantyne, R., Daniels, W.: GaSb photovoltaic cells ready for space and the home. III-Vs Rev. 12, 22 (1999)
CrossRef
Google scholar
|
[13] |
Tournet, J., Parola, S., Vauthelin, A., Montesdeoca Cardenes, D., Soresi, S., Martinez, F., Lu, Q., Cuminal, Y., Carrington, P.J., Décobert, J., Krier, A., Rouillard, Y., Tournié, E.: GaSbbased solar cells for multi-junction integration on Si substrates. Sol. Energy Mater. Sol. Cells 191, 444–450 (2019)
CrossRef
Google scholar
|
[14] |
Tan, M., Ji, L., Wu, Y., Dai, P., Wang, Q., Li, K., Yu, T., Yu, Y., Lu, S., Yang, H.: Investigation of InGaAs thermophotovoltaic cells under blackbody radiation. Appl. Phys. Express7(9), 096601 (2014)
CrossRef
Google scholar
|
[15] |
Hines, M.A., Scholes, G.D.: Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater.15(21), 1844–1849 (2003)
CrossRef
Google scholar
|
[16] |
Liu, S., Li, M.Y., Xiong, K., Gao, J., Lan, X., Zhang, D., Gao, L., Zhang, J., Tang, J.: Efficient quantum dot infrared solar cells with enhanced low-energy photon conversion via optical engineering. Nano Res.16(2), 2392–2398 (2023)
CrossRef
Google scholar
|
[17] |
Li, M., Chen, S., Zhao, X., Xiong, K., Wang, B., Shah, U.A., Gao, L., Lan, X., Zhang, J., Hsu, H.Y., Tang, J., Song, H.: Matching charge extraction contact for infrared PbS colloidal quantum dot solar cells. Small18(1), 2105495 (2022)
CrossRef
Google scholar
|
[18] |
Xia, Y., Liu, S., Wang, K., Yang, X., Lian, L., Zhang, Z., He, J., Liang, G., Wang, S., Tan, M., Song, H., Zhang, D., Gao, J., Tang, J., Beard, M.C., Zhang, J.: Cation-exchange synthesis of highly monodisperse PbS quantum dots from ZnS nanorods for efficient infrared solar cells. Adv. Funct. Mater.30(4), 1907379 (2020)
CrossRef
Google scholar
|
[19] |
Fan, J.Z., Andersen, N.T., Biondi, M., Todorović, P., Sun, B., Ouellette, O., Abed, J., Sagar, L.K., Choi, M., Hoogland, S., de Arquer, F.P.G., Sargent, E.H.: Mixed lead halide passivation of quantum dots. Adv. Mater.31(48), 1904304 (2019)
CrossRef
Google scholar
|
[20] |
Li, M., Zhao, X., Zhang, A., Wang, B., Yang, Y., Xu, S., Hu, Q., Liang, G., Xiao, Z., Gao, L., Zhang, J., Hsu, H.Y., Song, H., Tang, J.: Organic ligand complementary passivation to colloidalquantum-dot surface enables efficient infrared solar cells. Chem. Eng. J. 455, 140961 (2023)
CrossRef
Google scholar
|
[21] |
Baek, S., Molet, P., Choi, M., Biondi, M., Ouellette, O., Fan, J., Hoogland, S., García de Arquer, F.P., Mihi, A., Sargent, E.H.: Nanostructured back reflectors for efficient colloidal quantum-dot infrared optoelectronics. Adv. Mater.31(33), 1901745 (2019)
CrossRef
Google scholar
|
[22] |
Ding, C., Wang, D., Liu, D., Li, H., Li, Y., Hayase, S., Sogabe, T., Masuda, T., Zhou, Y., Yao, Y., Zou, Z., Wang, R., Shen, Q.: Over 15% efficiency PbS quantum-dot solar cells by synergistic effects of three interface engineering: reducing nonradiative recombination and balancing charge carrier extraction. Adv. Energy Mater.12(35), 2201676 (2022)
CrossRef
Google scholar
|
[23] |
Jo, J.W., Choi, J., García de Arquer, F.P., Seifitokaldani, A., Sun, B., Kim, Y., Ahn, H., Fan, J., Quintero-Bermudez, R., Kim, J., Choi, M.J., Baek, S.W., Proppe, A.H., Walters, G., Nam, D.H., Kelley, S., Hoogland, S., Voznyy, O., Sargent, E.H.: Acid-assisted ligand exchange enhances coupling in colloidal quantum dot solids. Nano Lett.18(7), 4417–4423 (2018)
CrossRef
Google scholar
|
[24] |
Wang, H., Nakao, S., Miyashita, N., Oteki, Y., Giteau, M., Okada, Y., Takamoto, T., Saito, H., Magaino, S., Takagi, K., Hasegawa, T., Kubo, T., Kinoshita, T., Nakazaki, J., Segawa, H.: Spectral splitting solar cells constructed with InGaP/GaAs two-junction subcells and infrared PbS quantum dot/ZnO nanowire subcells. ACS Energy Lett.7(8), 2477–2485 (2022)
CrossRef
Google scholar
|
[25] |
Fan, J.Z., Vafaie, M., Bertens, K., Sytnyk, M., Pina, J.M., Sagar, L.K., Ouellette, O., Proppe, A.H., Rasouli, A.S., Gao, Y., Baek, S.W., Chen, B., Laquai, F., Hoogland, S., Arquer, F.P.G., Heiss, W., Sargent, E.H.: Micron thick colloidal quantum dot solids. Nano Lett.20(7), 5284–5291 (2020)
CrossRef
Google scholar
|
[26] |
Bi, Y., Bertran, A., Gupta, S., Ramiro, I., Pradhan, S., Christodoulou, S., Majji, S.N., Akgul, M.Z., Konstantatos, G.: Solution processed infrared- and thermo-photovoltaics based on 0.7 eV bandgap PbS colloidal quantum dots. Nanoscale11(3), 838–843 (2019)
CrossRef
Google scholar
|
[27] |
Duan, J., Zhang, H., Tang, Q., He, B., Yu, L.: Recent advances in critical materials for quantum dot-sensitized solar cells: a review. J. Mater. Chem. A Mater. Energy Sustain.3(34), 17497–17510 (2015)
CrossRef
Google scholar
|
[28] |
Jeong, K.S., Tang, J., Liu, H., Kim, J., Schaefer, A.W., Kemp, K., Levina, L., Wang, X., Hoogland, S., Debnath, R., Brzozowski, L., Sargent, E.H., Asbury, J.B.: Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. ACS Nano6(1), 89–99 (2012)
CrossRef
Google scholar
|
[29] |
Liu, H., Zhong, H., Zheng, F., Xie, Y., Li, D., Wu, D., Zhou, Z., Sun, X.W., Wang, K.: Near-infrared lead chalcogenide quantum dots: synthesis and applications in light emitting diodes. Chin. Phys. B28(12), 128504 (2019)
CrossRef
Google scholar
|
[30] |
Zhou, S., Liu, Z., Wang, Y., Lu, K., Yang, F., Gu, M., Xu, Y., Chen, S., Ling, X., Zhang, Y., Li, F., Yuan, J., Ma, W.: Towards scalable synthesis of high-quality PbS colloidal quantum dots for photovoltaic applications. J. Mater. Chem. C Mater. Opt. Electron. Devices7(6), 1575–1583 (2019)
CrossRef
Google scholar
|
[31] |
Kagan, C.R., Murray, C.B.: Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol.10(12), 1013–1026 (2015)
CrossRef
Google scholar
|
[32] |
Zabet-Khosousi, A., Dhirani, A.A.: Charge transport in nanoparticle assemblies. Chem. Rev.108(10), 4072–4124 (2008)
CrossRef
Google scholar
|
[33] |
Choi, J.H., Fafarman, A.T., Oh, S.J., Ko, D.K., Kim, D.K., Diroll, B.T., Muramoto, S., Gillen, J.G., Murray, C.B., Kagan, C.R.: Bandlike transport in strongly coupled and doped quantum dot solids: a route to high-performance thin-film electronics. Nano Lett.12(5), 2631–2638 (2012)
CrossRef
Google scholar
|
[34] |
Kawashima, T., Ezure, T., Okada, K., Matsui, H., Goto, K., Tanabe, N.: FTO/ITO double-layered transparent conductive oxide for dye-sensitized solar cells. J. Photochem. Photobiol. Chem. 164(1–3), 199–202 (2004)
CrossRef
Google scholar
|
[35] |
Ge, C., Yang, E., Zhao, X., Yuan, C., Li, S., Dong, C., Ruan, Y., Fu, L., He, Y., Zeng, X., Song, H., Hu, B., Chen, C., Tang, J.: Efficient near-infrared PbS quantum dot solar cells employing hydrogenated In2O3 transparent electrode. Small18(44), 2203677 (2022)
CrossRef
Google scholar
|
[36] |
Alam, M.J., Cameron, D.C.: Optical and electrical properties of transparent conductive ITO thin films deposited by sol–gel process. Thin Solid Films 377–378, 455–459 (2000)
CrossRef
Google scholar
|
[37] |
Ellmer, K.: Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics6(12), 809–817 (2012)
CrossRef
Google scholar
|
[38] |
Georgitzikis, E., Malinowski, P.E., Maes, J., Hadipour, A., Hens, Z., Heremans, P., Cheyns, D.: Optimization of charge carrier extraction in colloidal quantum dots short-wave infrared photodiodes through optical engineering. Adv. Funct. Mater.28(42), 1804502 (2018)
CrossRef
Google scholar
|
/
〈 | 〉 |