Achievable information rate optimization in C-band optical fiber communication system

  • Zheng Liu 1 ,
  • Tianhua Xu , 1,2,3 ,
  • Ji Qi 1 ,
  • Joshua Uduagbomen 2 ,
  • Jian Zhao , 1 ,
  • Tiegen Liu 1
Expand
  • 1. School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2. School of Engineering, University of Warwick, Coventry CV4 7AL, UK
  • 3. Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, UK
tianhua.xu@ieee.org
enzhaojian@tju.edu.cn

Received date: 14 Feb 2023

Accepted date: 19 Apr 2023

Published date: 15 Jun 2023

Copyright

2023 The Author(s) 2023

Abstract

Optical fiber communication networks play an important role in the global telecommunication network. However, nonlinear effects in the optical fiber and transceiver noise greatly limit the performance of fiber communication systems. In this paper, the product of mutual information (MI) and communication bandwidth is used as the metric of the achievable information rate (AIR). The MI loss caused by the transceiver is also considered in this work, and the bit-wise MI, generalized mutual information (GMI), is used to calculate the AIR. This loss is more significant in the use of higher-order modulation formats. The AIR analysis is carried out in the QPSK, 16QAM, 64QAM and 256QAM modulation formats for the communication systems with different communication bandwidths and transmission distances based on the enhanced Gaussian noise (EGN) model. The paper provides suggestions for the selection of the optimal modulation format in different transmission scenarios.

Cite this article

Zheng Liu , Tianhua Xu , Ji Qi , Joshua Uduagbomen , Jian Zhao , Tiegen Liu . Achievable information rate optimization in C-band optical fiber communication system[J]. Frontiers of Optoelectronics, 2023 , 16(2) : 17 . DOI: 10.1007/s12200-023-00072-5

1
Cisco Visual Networking Index (VNI) Complete Forecast Update, 2017–2022. Available at website of cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1213-business-services-ckn.pdf (2018)

2
Jin, C., Shevchenko, N.A., Li, Z., Popov, S., Chen, Y., Xu, T.: Nonlinear coherent optical systems in the presence of equalization enhanced phase noise. J. Lightwave Technol. 39(14), 4646–4653 (2021)

DOI

3
Ives, D.J., Bayvel, P., Savory, S.J.: Adapting transmitter power and modulation format to improve optical network performance utilizing the gaussian noise model of nonlinear impairments. J. Lightwave Technol. 32(21), 3485–3494 (2014)

DOI

4
Saif, W.S., Ragheb, A.M., Nebendahl, B., Alshawi, T., Marey, M., Alshebeili, S.A.: Performance investigation of modulation format identification in super-channel optical networks. IEEE Photon. J. 14(2), 1–10 (2022)

DOI

5
Semrau, D., Sillekens, E., Killey, R.I., Bayvel, P.: The benefits of using the s-band in optical fiber communications and how to get there. In: Proceedings of 2020 IEEE Photonics Conference (IPC). IEEE, pp. 1–2 (2020)

DOI

6
Tzimpragos, G., Kachris, C., Djordjevic, I.B., Cvijetic, M., Soudris, D., Tomkos, I.: A survey on FEC codes for 100 G and beyond optical networks. IEEE Commun. Surv. Tutor. 18(1), 209–221 (2014)

DOI

7
Zokaei, A., Truhachev, D., El-Sankary, K.: Memory optimized hardware implementation of open FEC encoder. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 30(10), 1548–1552 (2022)

DOI

8
Alvarado, A., Fehenberger, T., Chen, B., Willems, F.M.J.: Achievable information rates for fiber optics: applications and computations. J. Lightwave Technol. 36(2), 424–439 (2018)

DOI

9
James, F.: Monte Carlo theory and practice. Rep. Prog. Phys. 43(9), 1145 (1980)

DOI

10
Carena, A., Bosco, G., Curri, V., Jiang, Y., Poggiolini, P., Forghieri, F.: EGN model of non-linear fiber propagation. Opt. Express 22(13), 16335–16362 (2014)

DOI

11
Poggiolini, P.: The GN model of non-linear propagation in uncompensated coherent optical systems. J. Lightwave Technol. 30(24), 3857–3879 (2012)

DOI

12
Poggiolini, P., Jiang, Y., Carena, A., Forghieri, F.: A simple and accurate closed-form EGN model formula. arXiv e-prints, 1503–04132. arXiv: 1503.04132 (2015)

13
Shevchenko, N.A., Xu, T., Lavery, D., Liga, G., Ives, D.J., Killey, R.I., Bayvel, P.: Modeling of nonlinearity-compensated optical communication systems considering second-order signal-noise interactions. Opt. Lett. 42(17), 3351–3354 (2017)

DOI

14
Liu, Z., Xu, T., Jin, C., Xu, T., Tan, M., Zhao, J., Liu, T.: Analytical optimization of wideband nonlinear optical fiber communication systems. Opt. Express 30(7), 11345–11359 (2022)

DOI

15
Nespola, A., Huchard, M., Bosco, G., Carena, A., Jiang, Y., Poggiolini, P., Forghieri, F.: Experimental validation of the EGN-model in uncompensated optical links. In: Proceedings of 2015 Optical Fiber Communications Conference and Exhibition (OFC). OSA, pp. 1–3 (2015)

DOI

16
Seve, E., Pesic, J., Pointurier, Y.: Accurate QoT estimation by means of a reduction of edfa characteristics uncertainties with machine learning. In: Proceedings of 2020 International Conference on Optical Network Design and Modeling (ONDM). IEEE, pp. 1–3 (2020)

DOI

17
Liga, G., Chen, B., Barreiro, A., Alvarado, A.: Modeling of non-linear interference power for dual-polarization 4D formats. In: Proceedings of 2021 Optical Fiber Communications Conference and Exhibition (OFC). OSA, pp. 1–3 (2021)

DOI

18
Zhong, K., Zhou, X., Wang, Y., Gui, T., Yang, Y., Yuan, J., Wang, L., Chen, W., Zhang, H., Man, J., Zeng, L., Yu, C., Lau, A.P.T., Lu, C.: Recent advances in short reach systems. In: Proceedings of Optical Fiber Communication Conference. OSA, pp. 2–7 (2017)

DOI

19
Xu, T., Shevchenko, N.A., Lavery, D., Semrau, D., Liga, G., Alvarado, A., Killey, R.I., Bayvel, P.: Modulation format dependence of digital nonlinearity compensation performance in optical fibre communication systems. Opt. Express 25(4), 3311–3326 (2017)

DOI

20
Qu, Z., Djordjevic, I.B.: On the probabilistic shaping and geometric shaping in optical communication systems. IEEE Access 7, 21454–21464 (2019)

DOI

Outlines

/