Achievable information rate optimization in C-band optical fiber communication system

Zheng Liu , Tianhua Xu , Ji Qi , Joshua Uduagbomen , Jian Zhao , Tiegen Liu

Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (2) : 17

PDF (954KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (2) : 17 DOI: 10.1007/s12200-023-00072-5
LETTER

Achievable information rate optimization in C-band optical fiber communication system

Author information +
History +
PDF (954KB)

Abstract

Optical fiber communication networks play an important role in the global telecommunication network. However, nonlinear effects in the optical fiber and transceiver noise greatly limit the performance of fiber communication systems. In this paper, the product of mutual information (MI) and communication bandwidth is used as the metric of the achievable information rate (AIR). The MI loss caused by the transceiver is also considered in this work, and the bit-wise MI, generalized mutual information (GMI), is used to calculate the AIR. This loss is more significant in the use of higher-order modulation formats. The AIR analysis is carried out in the QPSK, 16QAM, 64QAM and 256QAM modulation formats for the communication systems with different communication bandwidths and transmission distances based on the enhanced Gaussian noise (EGN) model. The paper provides suggestions for the selection of the optimal modulation format in different transmission scenarios.

Graphical abstract

Keywords

Optical fiber communication / Achievable information rate / Mutual information / Generalized mutual information

Cite this article

Download citation ▾
Zheng Liu, Tianhua Xu, Ji Qi, Joshua Uduagbomen, Jian Zhao, Tiegen Liu. Achievable information rate optimization in C-band optical fiber communication system. Front. Optoelectron., 2023, 16(2): 17 DOI:10.1007/s12200-023-00072-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cisco Visual Networking Index (VNI) Complete Forecast Update, 2017–2022. Available at website of cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1213-business-services-ckn.pdf (2018)

[2]

Jin, C., Shevchenko, N.A., Li, Z., Popov, S., Chen, Y., Xu, T.: Nonlinear coherent optical systems in the presence of equalization enhanced phase noise. J. Lightwave Technol. 39(14), 4646–4653 (2021)

[3]

Ives, D.J., Bayvel, P., Savory, S.J.: Adapting transmitter power and modulation format to improve optical network performance utilizing the gaussian noise model of nonlinear impairments. J. Lightwave Technol. 32(21), 3485–3494 (2014)

[4]

Saif, W.S., Ragheb, A.M., Nebendahl, B., Alshawi, T., Marey, M., Alshebeili, S.A.: Performance investigation of modulation format identification in super-channel optical networks. IEEE Photon. J. 14(2), 1–10 (2022)

[5]

Semrau, D., Sillekens, E., Killey, R.I., Bayvel, P.: The benefits of using the s-band in optical fiber communications and how to get there. In: Proceedings of 2020 IEEE Photonics Conference (IPC). IEEE, pp. 1–2 (2020)

[6]

Tzimpragos, G., Kachris, C., Djordjevic, I.B., Cvijetic, M., Soudris, D., Tomkos, I.: A survey on FEC codes for 100 G and beyond optical networks. IEEE Commun. Surv. Tutor. 18(1), 209–221 (2014)

[7]

Zokaei, A., Truhachev, D., El-Sankary, K.: Memory optimized hardware implementation of open FEC encoder. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 30(10), 1548–1552 (2022)

[8]

Alvarado, A., Fehenberger, T., Chen, B., Willems, F.M.J.: Achievable information rates for fiber optics: applications and computations. J. Lightwave Technol. 36(2), 424–439 (2018)

[9]

James, F.: Monte Carlo theory and practice. Rep. Prog. Phys. 43(9), 1145 (1980)

[10]

Carena, A., Bosco, G., Curri, V., Jiang, Y., Poggiolini, P., Forghieri, F.: EGN model of non-linear fiber propagation. Opt. Express 22(13), 16335–16362 (2014)

[11]

Poggiolini, P.: The GN model of non-linear propagation in uncompensated coherent optical systems. J. Lightwave Technol. 30(24), 3857–3879 (2012)

[12]

Poggiolini, P., Jiang, Y., Carena, A., Forghieri, F.: A simple and accurate closed-form EGN model formula. arXiv e-prints, 1503–04132. arXiv: 1503.04132 (2015)

[13]

Shevchenko, N.A., Xu, T., Lavery, D., Liga, G., Ives, D.J., Killey, R.I., Bayvel, P.: Modeling of nonlinearity-compensated optical communication systems considering second-order signal-noise interactions. Opt. Lett. 42(17), 3351–3354 (2017)

[14]

Liu, Z., Xu, T., Jin, C., Xu, T., Tan, M., Zhao, J., Liu, T.: Analytical optimization of wideband nonlinear optical fiber communication systems. Opt. Express 30(7), 11345–11359 (2022)

[15]

Nespola, A., Huchard, M., Bosco, G., Carena, A., Jiang, Y., Poggiolini, P., Forghieri, F.: Experimental validation of the EGN-model in uncompensated optical links. In: Proceedings of 2015 Optical Fiber Communications Conference and Exhibition (OFC). OSA, pp. 1–3 (2015)

[16]

Seve, E., Pesic, J., Pointurier, Y.: Accurate QoT estimation by means of a reduction of edfa characteristics uncertainties with machine learning. In: Proceedings of 2020 International Conference on Optical Network Design and Modeling (ONDM). IEEE, pp. 1–3 (2020)

[17]

Liga, G., Chen, B., Barreiro, A., Alvarado, A.: Modeling of non-linear interference power for dual-polarization 4D formats. In: Proceedings of 2021 Optical Fiber Communications Conference and Exhibition (OFC). OSA, pp. 1–3 (2021)

[18]

Zhong, K., Zhou, X., Wang, Y., Gui, T., Yang, Y., Yuan, J., Wang, L., Chen, W., Zhang, H., Man, J., Zeng, L., Yu, C., Lau, A.P.T., Lu, C.: Recent advances in short reach systems. In: Proceedings of Optical Fiber Communication Conference. OSA, pp. 2–7 (2017)

[19]

Xu, T., Shevchenko, N.A., Lavery, D., Semrau, D., Liga, G., Alvarado, A., Killey, R.I., Bayvel, P.: Modulation format dependence of digital nonlinearity compensation performance in optical fibre communication systems. Opt. Express 25(4), 3311–3326 (2017)

[20]

Qu, Z., Djordjevic, I.B.: On the probabilistic shaping and geometric shaping in optical communication systems. IEEE Access 7, 21454–21464 (2019)

RIGHTS & PERMISSIONS

The Author(s) 2023

AI Summary AI Mindmap
PDF (954KB)

835

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/