Impact of film thickness in laser-induced periodic structures on amorphous Si films
Received date: 13 Jan 2023
Accepted date: 23 Apr 2023
Published date: 15 Jun 2023
Copyright
We report self-organized periodic nanostructures on amorphous silicon thin films by femtosecond laser-induced oxidation. The dependence of structural periodicity on the thickness of silicon films and the substrate materials is investigated. The results reveal that when silicon film is 200 nm, the period of self-organized nanostructures is close to the laser wavelength and is insensitive to the substrates. In contrast, when the silicon film is 50 nm, the period of nanostructures is much shorter than the laser wavelength, and is dependent on the substrates. Furthermore, we demonstrate that, for the thick silicon films, quasi-cylindrical waves dominate the formation of periodic nanostructures, while for the thin silicon films, the formation originates from slab waveguide modes. Finite-difference time-domain method-based numerical simulations support the experimental discoveries.
Liye Xu , Jiao Geng , Liping Shi , Weicheng Cui , Min Qiu . Impact of film thickness in laser-induced periodic structures on amorphous Si films[J]. Frontiers of Optoelectronics, 2023 , 16(2) : 16 . DOI: 10.1007/s12200-023-00071-6
1 |
Caldarola, M., Albella, P., Cortés, E., Rahmani, M., Roschuk, T., Grinblat, G., Oulton, R.F., Bragas, A.V., Maier, S.A.: Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat. Commun. 6(1), 7915 (2015)
|
2 |
Yang, Y., Wang, W., Boulesbaa, A., Kravchenko, I.I., Briggs, D.P., Puretzky, A., Geohegan, D., Valentine, J.: Nonlinear fano-resonant dielectric metasurfaces. Nano. Lett. 15(11), 7388–7393 (2015)
|
3 |
Liu, X., Osgood, R.M., Jr., Vlasov, Y.A., Green, W.M.: Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nat. Photonics 4(8), 557–560 (2010)
|
4 |
Yu, N., Capasso, F.: Flat optics with designer metasurfaces. Nat. Mater. 13(2), 139–150 (2014)
|
5 |
Staude, I., Schilling, J.: Metamaterial-inspired silicon nanophotonics. Nat. Photonics 11(5), 274–284 (2017)
|
6 |
Zhang, D., Wu, L.C., Ueki, M., Ito, Y., Sugioka, K.: Femtosecond laser shockwave peening ablation in liquids for hierarchical micro/nanostructuring of brittle silicon and its biological application. Int. J. Extreme Manuf. 2(4), 045001 (2020)
|
7 |
Chambonneau, M., Richter, D., Nolte, S., Grojo, D.: Inscribing diffraction gratings in bulk silicon with nanosecond laser pulses. Opt Lett 43(24), 6069–6072 (2018)
|
8 |
Wang, M., Zhao, K., Wu, J., Li, Y., Yang, Y., Huang, S., Zhao, J., Tweedle, T., Carpenter, D., Zheng, G., Yu, Q., Chen, K.P.: Femtosecond laser fabrication of nanograting-based distributed fiber sensors for extreme environmen tal applications. Int. J. Extreme Manuf. 3(2), 025401 (2021)
|
9 |
Pavlov, I., Tokel, O., Pavlova, S., Kadan, V., Makey, G., Turnali, A., Yavuz, Ö., Ilday, F.Ö.: Femtosecond laser written waveguides deep inside silicon. Opt. Lett. 42(15), 3028–3031 (2017)
|
10 |
Tokel, O., Turnali, A., Makey, G., Elahi, P., Çolakoğlu, T., Ergeçen, E., Yavuz, Ö., Hübner, R., Borra, M.Z., Pavlov, I., Bek, A., Turan, R., Kesim, D.K., Tozburun, S., Ilday, S., Ilday, F.Ö.: In-chip microstructures and photonic devices fabricated by non-linear laser lithography deep inside silicon. Nat. Photonics 11(10), 639–645 (2017)
|
11 |
Sipe, J., Young, J.F., Preston, J., Van Driel, H.: Laser-induced periodic surface structure. I. Theory. Phys. Rev. B Condens. Matter. 27(2), 1141–1154 (1983)
|
12 |
Bonse, J., Gräf, S.: Maxwell meets marangoni—a review of theories on laser-induced periodic surface structures. Laser Photonics Rev. 14(10), 2000215 (2020)
|
13 |
Fauchet, P., Siegman, A.: Surface ripples on silicon and gallium arsenide under picosecond laser illumination. Appl. Phys. Lett. 40(9), 824–826 (1982)
|
14 |
Guosheng, Z., Fauchet, P., Siegman, A.: Growth of spontaneous periodic surface structures on solids during laser illumination. Phys. Rev. B Condens. Matter 26(10), 5366–5381 (1982)
|
15 |
Birnbaum, M.: Semiconductor surface damage produced by ruby lasers. J. Appl. Phys. 36(11), 3688–3689 (1965)
|
16 |
Borowiec, A., Haugen, H.: Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 82(25), 4462–4464 (2003)
|
17 |
Bonse, J., Baudach, S., Krüger, J., Kautek, W., Lenzner, M.: Femtosecond laser ablation of silicon–modification thresholds and morphology. Appl. Phys. A Mater. Sci. Process. 74(1), 19–25 (2002)
|
18 |
Shimotsuma, Y., Kazansky, P.G., Qiu, J., Hirao, K.: Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91(24), 247405 (2003)
|
19 |
Derrien, T.Y., Torres, R., Sarnet, T., Sentis, M., Itina, T.E.: Formation of femtosecond laser induced surface structures on silicon: insights from numerical modeling and single pulse experiments. Appl. Surf. Sci. 258(23), 9487–9490 (2012)
|
20 |
Golosov, E., Ionin, A., Kolobov, Y.R., Kudryashov, S., Ligachev, A., Makarov, S., Novoselov, Y.N., Seleznev, L., Sinitsyn, D.: Formation of periodic nanostructures on aluminum surface by femtosecond laser pulses. Nanotechnol. Russ. 6(3), 237–243 (2011)
|
21 |
Huang, J., Liu, Y., Jin, S., Wang, Z., Qi, Y., Zhang, J., Wang, K., Qiu, R.: Uniformity control of laser-induced periodic surface structures. Front. Phys. (Lausanne) 10, 932284 (2022)
|
22 |
Gnilitskyi, I., Derrien, T.J.Y., Levy, Y., Bulgakova, N.M., Mocek, T., Orazi, L.: High-speed manufacturing of highly regular femto-second laser-induced periodic surface structures: physical origin of regularity. Sci. Rep. 7(1), 8485 (2017)
|
23 |
Levy, Y., Derrien, T.J.Y., Bulgakova, N.M., Gurevich, E.L., Mocek, T.: Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors. Appl. Surf. Sci. 374, 157–164 (2016)
|
24 |
Ruiz de la Cruz, A., Lahoz, R., Siegel, J., de la Fuente, G.F., Solis, J.: High speed inscription of uniform, large-area laser-induced periodic surface structures in Cr films using a high repetition rate fs laser. Opt. Lett. 39(8), 2491–2494 (2014)
|
25 |
Dostovalov, A.V., Derrien, T.J.Y., Lizunov, S.A., Přeučil, F., Okotrub, K.A., Mocek, T., Korolkov, V.P., Babin, S.A., Bulgakova, N.M.: LIPSS on thin metallic films: new insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation. Appl. Surf. Sci. 491, 650–658 (2019)
|
26 |
Yang, H.D., Li, X.H., Li, G.Q., Wen, C., Qiu, R., Huang, W.H., Wang, J.B.: Formation of colorized silicon by femtosecond laser pulses indifferent background gases. Appl. Phys. A Mater. Sci. Process. 104(2), 749–753 (2011)
|
27 |
Zhang, Y., Jiang, Q., Cao, K., Chen, T., Cheng, K., Zhang, S., Feng, D., Jia, T., Sun, Z., Qiu, J.: Extremely regular periodic surface structures in a large area efficiently induced on silicon by temporally shaped femtosecond laser. Photon. Res. 9(5), 839–847 (2021)
|
28 |
Gnilitskyi, I., Gruzdev, V., Bulgakova, N.M., Mocek, T., Orazi, L.: Mechanisms of high-regularity periodic structuring of silicon surface by sub-mhz repetition rate ultrashort laser pulses. Appl. Phys. Lett. 109(14), 143101 (2016)
|
29 |
Wang, L., Chen, Q.D., Cao, X.W., Buividas, R., Wang, X., Juodkazis, S., Sun, H.B.: Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing. Light Sci. Appl. 6(12), e17112 (2017)
|
30 |
Jiang, L., Wang, A.D., Li, B., Cui, T.H., Lu, Y.F.: Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light Sci. Appl. 7(2), 17134 (2017)
|
31 |
Öktem, B., Pavlov, I., Ilday, S., Kalaycıoğlu, H., Rybak, A., Yavas, S., Erdoğan, M., Ilday, F.O.: Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat. Photonics 7(11), 897–901 (2013)
|
32 |
Geng, J., Shi, L., Sun, X., Yan, W., Qiu, M.: Artificial seeds-regulated femtosecond laser plasmonic nanopatterning. Laser Photonics Rev. 16(11), 2200232 (2022)
|
33 |
Geng, J., Yan, W., Shi, L., Qiu, M.: Surface plasmons interference nanogratings: wafer-scale laser direct structuring in seconds. Light Sci. Appl. 11(1), 189 (2022)
|
34 |
Dostovalov, A.V., Korolkov, V.P., Okotrub, K.A., Bronnikov, K.A., Babin, S.A.: Oxide composition and period variation of thermochemical LIPSS on chromium films with different thickness. Opt. Express 26(6), 7712–7723 (2018)
|
35 |
Dostovalov, A., Bronnikov, K., Korolkov, V., Babin, S., Mitsai, E., Mironenko, A., Tutov, M., Zhang, D., Sugioka, K., Maksimovic, J., Katkus, T., Juodkazis, S., Zhizhchenko, A., Kuchmizhak, A.: Hierarchical anti-reflective laser-induced periodic surface structures (LIPSSs) on amorphous Si films for sensing applications. Nanoscale 12(25), 13431–13441 (2020)
|
36 |
Geng, J., Fang, X., Zhang, L., Yao, G., Xu, L., Liu, F., Tang, W., Shi, L., Qiu, M.: Controllable generation of large-scale highly regular gratings on Si films. Light Adv. Manuf 2(3), 274–282 (2021)
|
37 |
Geng, J., Yan, W., Shi, L., Qiu, M.: Quasicylindrical waves for ordered nanostructuring. Nano Lett. 22(23), 9658–9663 (2022)
|
38 |
van Beijnum, F., Rétif, C., Smiet, C.B., Liu, H., Lalanne, P., van Exter, M.P.: Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission. Nature 492(7429), 411–414 (2012)
|
/
〈 | 〉 |