Impact of film thickness in laser-induced periodic structures on amorphous Si films

Liye Xu, Jiao Geng, Liping Shi, Weicheng Cui, Min Qiu

PDF(1324 KB)
PDF(1324 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (2) : 16. DOI: 10.1007/s12200-023-00071-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Impact of film thickness in laser-induced periodic structures on amorphous Si films

Author information +
History +

Abstract

We report self-organized periodic nanostructures on amorphous silicon thin films by femtosecond laser-induced oxidation. The dependence of structural periodicity on the thickness of silicon films and the substrate materials is investigated. The results reveal that when silicon film is 200 nm, the period of self-organized nanostructures is close to the laser wavelength and is insensitive to the substrates. In contrast, when the silicon film is 50 nm, the period of nanostructures is much shorter than the laser wavelength, and is dependent on the substrates. Furthermore, we demonstrate that, for the thick silicon films, quasi-cylindrical waves dominate the formation of periodic nanostructures, while for the thin silicon films, the formation originates from slab waveguide modes. Finite-difference time-domain method-based numerical simulations support the experimental discoveries.

Graphical abstract

Keywords

Laser-induced periodic surface structures (LIPSS) / Ultrafast optoelectronics / Laser nanofabrication / Quasi-cylindrical waves

Cite this article

Download citation ▾
Liye Xu, Jiao Geng, Liping Shi, Weicheng Cui, Min Qiu. Impact of film thickness in laser-induced periodic structures on amorphous Si films. Front. Optoelectron., 2023, 16(2): 16 https://doi.org/10.1007/s12200-023-00071-6

References

[1]
Caldarola, M., Albella, P., Cortés, E., Rahmani, M., Roschuk, T., Grinblat, G., Oulton, R.F., Bragas, A.V., Maier, S.A.: Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat. Commun. 6(1), 7915 (2015)
CrossRef Google scholar
[2]
Yang, Y., Wang, W., Boulesbaa, A., Kravchenko, I.I., Briggs, D.P., Puretzky, A., Geohegan, D., Valentine, J.: Nonlinear fano-resonant dielectric metasurfaces. Nano. Lett. 15(11), 7388–7393 (2015)
CrossRef Google scholar
[3]
Liu, X., Osgood, R.M., Jr., Vlasov, Y.A., Green, W.M.: Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nat. Photonics 4(8), 557–560 (2010)
CrossRef Google scholar
[4]
Yu, N., Capasso, F.: Flat optics with designer metasurfaces. Nat. Mater. 13(2), 139–150 (2014)
CrossRef Google scholar
[5]
Staude, I., Schilling, J.: Metamaterial-inspired silicon nanophotonics. Nat. Photonics 11(5), 274–284 (2017)
CrossRef Google scholar
[6]
Zhang, D., Wu, L.C., Ueki, M., Ito, Y., Sugioka, K.: Femtosecond laser shockwave peening ablation in liquids for hierarchical micro/nanostructuring of brittle silicon and its biological application. Int. J. Extreme Manuf. 2(4), 045001 (2020)
CrossRef Google scholar
[7]
Chambonneau, M., Richter, D., Nolte, S., Grojo, D.: Inscribing diffraction gratings in bulk silicon with nanosecond laser pulses. Opt Lett 43(24), 6069–6072 (2018)
CrossRef Google scholar
[8]
Wang, M., Zhao, K., Wu, J., Li, Y., Yang, Y., Huang, S., Zhao, J., Tweedle, T., Carpenter, D., Zheng, G., Yu, Q., Chen, K.P.: Femtosecond laser fabrication of nanograting-based distributed fiber sensors for extreme environmen tal applications. Int. J. Extreme Manuf. 3(2), 025401 (2021)
CrossRef Google scholar
[9]
Pavlov, I., Tokel, O., Pavlova, S., Kadan, V., Makey, G., Turnali, A., Yavuz, Ö., Ilday, F.Ö.: Femtosecond laser written waveguides deep inside silicon. Opt. Lett. 42(15), 3028–3031 (2017)
CrossRef Google scholar
[10]
Tokel, O., Turnali, A., Makey, G., Elahi, P., Çolakoğlu, T., Ergeçen, E., Yavuz, Ö., Hübner, R., Borra, M.Z., Pavlov, I., Bek, A., Turan, R., Kesim, D.K., Tozburun, S., Ilday, S., Ilday, F.Ö.: In-chip microstructures and photonic devices fabricated by non-linear laser lithography deep inside silicon. Nat. Photonics 11(10), 639–645 (2017)
CrossRef Google scholar
[11]
Sipe, J., Young, J.F., Preston, J., Van Driel, H.: Laser-induced periodic surface structure. I. Theory. Phys. Rev. B Condens. Matter. 27(2), 1141–1154 (1983)
CrossRef Google scholar
[12]
Bonse, J., Gräf, S.: Maxwell meets marangoni—a review of theories on laser-induced periodic surface structures. Laser Photonics Rev. 14(10), 2000215 (2020)
CrossRef Google scholar
[13]
Fauchet, P., Siegman, A.: Surface ripples on silicon and gallium arsenide under picosecond laser illumination. Appl. Phys. Lett. 40(9), 824–826 (1982)
CrossRef Google scholar
[14]
Guosheng, Z., Fauchet, P., Siegman, A.: Growth of spontaneous periodic surface structures on solids during laser illumination. Phys. Rev. B Condens. Matter 26(10), 5366–5381 (1982)
CrossRef Google scholar
[15]
Birnbaum, M.: Semiconductor surface damage produced by ruby lasers. J. Appl. Phys. 36(11), 3688–3689 (1965)
CrossRef Google scholar
[16]
Borowiec, A., Haugen, H.: Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 82(25), 4462–4464 (2003)
CrossRef Google scholar
[17]
Bonse, J., Baudach, S., Krüger, J., Kautek, W., Lenzner, M.: Femtosecond laser ablation of silicon–modification thresholds and morphology. Appl. Phys. A Mater. Sci. Process. 74(1), 19–25 (2002)
CrossRef Google scholar
[18]
Shimotsuma, Y., Kazansky, P.G., Qiu, J., Hirao, K.: Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91(24), 247405 (2003)
CrossRef Google scholar
[19]
Derrien, T.Y., Torres, R., Sarnet, T., Sentis, M., Itina, T.E.: Formation of femtosecond laser induced surface structures on silicon: insights from numerical modeling and single pulse experiments. Appl. Surf. Sci. 258(23), 9487–9490 (2012)
CrossRef Google scholar
[20]
Golosov, E., Ionin, A., Kolobov, Y.R., Kudryashov, S., Ligachev, A., Makarov, S., Novoselov, Y.N., Seleznev, L., Sinitsyn, D.: Formation of periodic nanostructures on aluminum surface by femtosecond laser pulses. Nanotechnol. Russ. 6(3), 237–243 (2011)
CrossRef Google scholar
[21]
Huang, J., Liu, Y., Jin, S., Wang, Z., Qi, Y., Zhang, J., Wang, K., Qiu, R.: Uniformity control of laser-induced periodic surface structures. Front. Phys. (Lausanne) 10, 932284 (2022)
CrossRef Google scholar
[22]
Gnilitskyi, I., Derrien, T.J.Y., Levy, Y., Bulgakova, N.M., Mocek, T., Orazi, L.: High-speed manufacturing of highly regular femto-second laser-induced periodic surface structures: physical origin of regularity. Sci. Rep. 7(1), 8485 (2017)
CrossRef Google scholar
[23]
Levy, Y., Derrien, T.J.Y., Bulgakova, N.M., Gurevich, E.L., Mocek, T.: Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors. Appl. Surf. Sci. 374, 157–164 (2016)
CrossRef Google scholar
[24]
Ruiz de la Cruz, A., Lahoz, R., Siegel, J., de la Fuente, G.F., Solis, J.: High speed inscription of uniform, large-area laser-induced periodic surface structures in Cr films using a high repetition rate fs laser. Opt. Lett. 39(8), 2491–2494 (2014)
CrossRef Google scholar
[25]
Dostovalov, A.V., Derrien, T.J.Y., Lizunov, S.A., Přeučil, F., Okotrub, K.A., Mocek, T., Korolkov, V.P., Babin, S.A., Bulgakova, N.M.: LIPSS on thin metallic films: new insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation. Appl. Surf. Sci. 491, 650–658 (2019)
CrossRef Google scholar
[26]
Yang, H.D., Li, X.H., Li, G.Q., Wen, C., Qiu, R., Huang, W.H., Wang, J.B.: Formation of colorized silicon by femtosecond laser pulses indifferent background gases. Appl. Phys. A Mater. Sci. Process. 104(2), 749–753 (2011)
CrossRef Google scholar
[27]
Zhang, Y., Jiang, Q., Cao, K., Chen, T., Cheng, K., Zhang, S., Feng, D., Jia, T., Sun, Z., Qiu, J.: Extremely regular periodic surface structures in a large area efficiently induced on silicon by temporally shaped femtosecond laser. Photon. Res. 9(5), 839–847 (2021)
CrossRef Google scholar
[28]
Gnilitskyi, I., Gruzdev, V., Bulgakova, N.M., Mocek, T., Orazi, L.: Mechanisms of high-regularity periodic structuring of silicon surface by sub-mhz repetition rate ultrashort laser pulses. Appl. Phys. Lett. 109(14), 143101 (2016)
CrossRef Google scholar
[29]
Wang, L., Chen, Q.D., Cao, X.W., Buividas, R., Wang, X., Juodkazis, S., Sun, H.B.: Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing. Light Sci. Appl. 6(12), e17112 (2017)
CrossRef Google scholar
[30]
Jiang, L., Wang, A.D., Li, B., Cui, T.H., Lu, Y.F.: Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light Sci. Appl. 7(2), 17134 (2017)
CrossRef Google scholar
[31]
Öktem, B., Pavlov, I., Ilday, S., Kalaycıoğlu, H., Rybak, A., Yavas, S., Erdoğan, M., Ilday, F.O.: Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat. Photonics 7(11), 897–901 (2013)
CrossRef Google scholar
[32]
Geng, J., Shi, L., Sun, X., Yan, W., Qiu, M.: Artificial seeds-regulated femtosecond laser plasmonic nanopatterning. Laser Photonics Rev. 16(11), 2200232 (2022)
CrossRef Google scholar
[33]
Geng, J., Yan, W., Shi, L., Qiu, M.: Surface plasmons interference nanogratings: wafer-scale laser direct structuring in seconds. Light Sci. Appl. 11(1), 189 (2022)
CrossRef Google scholar
[34]
Dostovalov, A.V., Korolkov, V.P., Okotrub, K.A., Bronnikov, K.A., Babin, S.A.: Oxide composition and period variation of thermochemical LIPSS on chromium films with different thickness. Opt. Express 26(6), 7712–7723 (2018)
CrossRef Google scholar
[35]
Dostovalov, A., Bronnikov, K., Korolkov, V., Babin, S., Mitsai, E., Mironenko, A., Tutov, M., Zhang, D., Sugioka, K., Maksimovic, J., Katkus, T., Juodkazis, S., Zhizhchenko, A., Kuchmizhak, A.: Hierarchical anti-reflective laser-induced periodic surface structures (LIPSSs) on amorphous Si films for sensing applications. Nanoscale 12(25), 13431–13441 (2020)
CrossRef Google scholar
[36]
Geng, J., Fang, X., Zhang, L., Yao, G., Xu, L., Liu, F., Tang, W., Shi, L., Qiu, M.: Controllable generation of large-scale highly regular gratings on Si films. Light Adv. Manuf 2(3), 274–282 (2021)
CrossRef Google scholar
[37]
Geng, J., Yan, W., Shi, L., Qiu, M.: Quasicylindrical waves for ordered nanostructuring. Nano Lett. 22(23), 9658–9663 (2022)
CrossRef Google scholar
[38]
van Beijnum, F., Rétif, C., Smiet, C.B., Liu, H., Lalanne, P., van Exter, M.P.: Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission. Nature 492(7429), 411–414 (2012)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(1324 KB)

Accesses

Citations

Detail

Sections
Recommended

/