Dark current modeling of thick perovskite X-ray detectors
Received date: 14 Jun 2022
Accepted date: 17 Jul 2022
Published date: 15 Dec 2022
Copyright
Metal halide perovskites (MHPs) have demonstrated excellent performances in detection of X-rays and gamma-rays. Most studies focus on improving the sensitivity of single-pixel MHP detectors. However, little work pays attention to the dark current, which is crucial for the back-end circuit integration. Herein, the requirement of dark current is quantitatively evaluated as low as 10?9 A/cm2 for X-ray imagers integrated on pixel circuits. Moreover, through the semiconductor device analysis and simulation, we reveal that the main current compositions of thick perovskite X-ray detectors are the thermionic-emission current (JT) and the generation-recombination current (Jg-r). The typical observed failures of p–n junctions in thick detectors are caused by the high generation-recombination current due to the band mismatch and interface defects. This work provides a deep insight into the design of high sensitivity and low dark current perovskite X-ray detectors.
Key words: Perovskite; X-ray detection; Dark current; Semiconductor simulation; Junction device
Shan Zhao , Xinyuan Du , Jincong Pang , Haodi Wu , Zihao Song , Zhiping Zheng , Ling Xu , Jiang Tang , Guangda Niu . Dark current modeling of thick perovskite X-ray detectors[J]. Frontiers of Optoelectronics, 2022 , 15(4) : 43 . DOI: 10.1007/s12200-022-00044-1
1 |
Wei, H., Huang, J.: Halide lead perovskites for ionizing radiation detection. Nat. Commun. 10(1), 1066(2019)
|
2 |
Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., Huang, J.: Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015)
|
3 |
Yin, W., Shi, T., Yan, Y.: Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104(6), 063903(2014)
|
4 |
Arquer, F., Armin, A., Meredith, P., Sargent, E.H.: Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100(2017)
|
5 |
Wei, W., Zhang, Y., Xu, Q., Wei, H., Fang, Y., Wang, Q., Deng, Y., Li, T., Gruverman, A., Cao, L., Huang, J.: Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photon. 11(5), 315–321 (2017)
|
6 |
Wang, X., Zhao, D., Qiu, Y., Huang, Y., Wu, Y., Li, G., Huang, Q., Khan, Q., Nathan, A., Lei, W., Chen, J.: PIN diodes array made of perovskite single crystal for X-Ray imaging. Phys. Status Solidi RRL 12(10), 1800380(2018)
|
7 |
Pan, W., Yang, B., Niu, G., Xue, K., Du, X., Yin, L., Zhang, M., Wu, H., Miao, X., Tang, J.: Hot-pressed CsPbBr3 quasimonocrystalline film for sensitive direct X-ray detection. Adv. Mater. 31(44), 1904405(2019)
|
8 |
Huang, Y., Qiao, L., Jiang, Y., He, T., Long, R., Yang, F., Wang, L., Lei, X., Yuan, M., Chen, J.: A-site cation engineering for highly efficient MAPbI3 single-crystal X-ray detector. Angew. Chem. Int. Ed. 58(49), 17834–17842 (2019)
|
9 |
Zhang, Y., Liu, Y., Xu, Z., Ye, H., Yang, Z., You, J., Liu, M., He, Y., Kanatzidis, M.G., Liu, S.: Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection. Nat. Commun. 11(1), 2304(2020)
|
10 |
Hu, M., Jia, S., Liu, Y., Cui, J., Zhang, Y., Su, H., Cao, S., Mo, L., Chu, D., Zhao, G., Zhao, K., Yang, Z., Liu, S.: Large and dense organic–inorganic hybrid perovskite CH3NH3PbI3 wafer fabricated by one-step reactive direct wafer production with high X-ray sensitivity. ACS Appl. Mater. Interfaces 12(14), 16592–16600 (2020)
|
11 |
Peng, J., Xia, C.Q., Xu, Y., Li, R., Cui, L., Clegg, J.K., Herz, L.M., Johnston, M.B., Lin, Q.: Crystallization of CsPbBr3 single crystals in water for X-ray detection. Nat. Commun. 12(1), 1531(2021)
|
12 |
Wei, H., Fang, Y., Mulligan, P., Chuirazzi, W., Fang, H., Wang, C., Ecker, B.R., Gao, Y., Loi, M.A., Cao, L., Huang, J.: Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photon. 10(5), 333–339 (2016)
|
13 |
He, Y., Hadar, I., Kanatzidis, M.G.: Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nat. Photon. 16(1), 14–26 (2021)
|
14 |
Huang, H., Abbaszadeh, S.: Recent developments of amorphous selenium-based X-ray detectors: a review. IEEE Sens. J. 20(4), 1694–1704 (2020)
|
15 |
Szeles, C.: CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Phys. Status Solidi 241(3), 783–790 (2004)
|
16 |
Kasap, S.O., Rowlands, J.A.: Photoconductor selection for digital flat panel X-ray image detectors based on the dark current. J. Vac. Sci. Technol. A 18(2), 615–620 (2000)
|
17 |
Zhao, W., Rowlands, J.A.: X-ray imaging using amorphous selenium: feasibility of a flat panel self-scanned detector for digital radiology. J. Med. Phys. 22(10), 1595–1604 (1995)
|
18 |
Fang, Y., Huang, J.: Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv. Mater. 27(17), 2804–2810 (2015)
|
19 |
Euvrard, J., Yan, Y., Mitzi, D.B.: Electrical doping in halide perovskites. Nat. Rev. Mater. 6(6), 531–549 (2021)
|
20 |
Nayak, P.K., Sendner, M., Wenger, B., Wang, Z., Sharma, K., Ramadan, A.J., Lovrinčić, R., Pucci, A., Madhu, P.K., Snaith, H.J.: Impact of Bi3+ heterovalent doping in organic–inorganic metal halide perovskite crystals. J. Am. Chem. Soc. 140(2), 574–577 (2018)
|
21 |
Docampo, P., Ball, J.M., Darwich, M., Eperon, G.E., Snaith, H.J.: Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4(1), 2761(2013)
|
22 |
Tan, Z., Moghaddam, R.S., Lai, M.L., Docampo, P., Higler, R., Deschler, F., Price, M., Sadhanala, A., Pazos, L.M., Credgington, D., Hanusch, F., Bein, T., Snaith, H.J., Friend, R.H.: right light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9(9), 687–692 (2014)
|
23 |
Dou, L., Yang, Y., You, J., Hong, Z., Chang, W., Li, G., Yang, Y.: Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5(1), 5404(2014)
|
24 |
Stranks, S.D., Snaith, H.J.: Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10(5), 391–402 (2015)
|
25 |
He, Y., Ke, W., Alexander, G.C.B., McCall, K.M., Chica, D.G., Liu, Z., Hadar, I., Stoumpos, C.C., Wessels, B.W., Kanatzidis, M.G.: Resolving the energy of γ-ray photons with MAPbI3 single crystals. ACS Photonics 5(10), 4132–4138 (2018)
|
26 |
He, Y., Matei, L., Jung, H.J., McCall, K.M., Chen, M., Stoumpos, C.C., Liu, Z., Peters, J.A., Chung, D.Y., Wessels, B.W., Wasielewski, M.R., Dravid, V.P., Burger, A., Kanatzidis, M.G.: High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Commun. 9(1), 1609(2018)
|
27 |
He, Y., Petryk, M., Liu, Z., Chica, D.G., Hadar, I., Leak, C., Ke, W., Spanopoulos, I., Lin, W., Chung, D.Y., Wessels, B.W., He, Z., Kanatzidis, M.G.: CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nat. Photon. 15(1), 36–42 (2021)
|
28 |
Peng, J., Ye, K., Xu, Y., Cui, L., Li, R., Peng, H., Lin, Q.: X-ray detection based on crushed perovskite crystal/polymer composites. Composites Sens. Actuators A 312, 112132(2020)
|
29 |
Wei, H., DeSantis, D., Wei, W., Deng, Y., Guo, D., Savenije, T.J., Cao, L., Huang, J.: Dopant compensation in alloyed CH3NH3PbBr3?xClx perovskite single crystals for gamma-ray spectroscopy. Nat. Mater. 16(8), 826–833 (2017)
|
30 |
Kim, Y.C., Kim, K.H., Son, D., Jeong, D., Seo, J., Choi, Y.S., Han, I.T., Lee, S.Y., Park, N.: Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550(7674), 87–91 (2017)
|
31 |
Zhou, Y., Zhao, L., Ni, Z., Zhao, J., Xiao, X., Huang, J.: Heterojunction structures for reduced noise in large-area and sensitive perovskite X-ray detectors. Sci. Adv. 7(36), 6716(2021)
|
32 |
Xu, Y., Jiao, B., Song, T., Stoumpos, C.C., He, Y., Hadar, I., Lin, W., Jie, W., Kanatzidis, M.G.: Zero-dimensional Cs2TeI6 perovskite: solution-processed thick films with high X-ray sensitivity. ACS Photonics 6(1), 196–203 (2018)
|
33 |
Thompson, M., Ellison, S.L.R., Wood, R.: Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl. Chem. 74(5), 835–855 (2002)
|
34 |
El-Gabaly, M., Nigrin, J., Goud, P.A.: Stationary charge transport in metal-semiconductor-metal (MSM) structures. J. Appl. Phys. 44(10), 4672–4680 (1973)
|
35 |
Sze, S.M., Ng, K.K.: Physics of semiconductor devices, 3rd ed. Hoboken: John Wiley & Sons, 80-88, 166–169 (2006)
|
36 |
Homes, C.C., Vogt, T., Shapiro, S.M., Wakimoto, S., Ramirez, A.P.: Optical response of high-dielectric-constant perovskiterelated oxide. Science 293(5530), 673–676 (2001)
|
37 |
Ni, Z., Bao, C., Liu, Y., Jiang, Q., Wu, W., Chen, S., Dai, X., Chen, B., Hartweg, B., Yu, Z., Holman, Z., Huang, J.: Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367(6484), 1352–1358 (2020)
|
38 |
Wu, C.Y.: Interfacial layer-thermionic-diffusion theory for the Schottky barrier diode. J. Appl. Phys. 53(8), 5947–5950 (1982)
|
39 |
Colinge, J.P., Colinge, C.A.: Physics of semiconductor devices. Springer Science & Business Media, Berlin (2005)
|
40 |
Ollearo, R., Wang, J., Dyson, M.J., Weijtens, C.H.L., Fattori, M., van Gorkom, B.T., van Breemen, A.J.J.M., Meskers, S.C.J., Janssen, R.A.J., Gelinck, G.H.: Ultralow dark current in nearinfrared perovskite photodiodes by reducing charge injection and interfacial charge generation. Nat. Commun. 12(1), 7277(2021)
|
41 |
Jiang, Q., Zhang, X., You, J.: SnO2: a wonderful electron transport layer for perovskite solar cells. Small 14(31), 1801154(2018)
|
42 |
Baikie, T., Fang, Y., Kadro, J.M., Schreyer, M., Wei, F., Mhaisalkar, S.G., Graetzel, M., White, T.J.: Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1(18), 5628–5641 (2013)
|
43 |
Raoui, Y., Ez-Zahraouy, H., Tahiri, N., Bounagui, O.E., Ahmad, S., Kazim, S.: Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: Simulation study. Sol. Energy 193, 948–955 (2019)
|
44 |
Wehrenfennig, C., Eperon, G.E., Johnston, M.B., Snaith, H.J., Herz, L.M.: High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26(10), 1584–1589 (2014)
|
45 |
Shukl, V., Panda, G.: The performance study of CdTe/CdS/SnO2 solar cell. Mater. Today Proc. 26, 487–491 (2020)
|
46 |
Xia, M., Song, Z., Wu, H., Du, X., He, X., Pang, J., Luo, H., Jin, L., Li, G., Niu, G., Tang, J.: Compact and large-area perovskite films achieved via soft-pressing and multi-functional polymerizable binder for flat-panel X-ray imager. Adv. Funct. Mater. 32(16), 2110729(2022)
|
47 |
Bansal, S., Aryal, P.: Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 0747–0750 (2016)
|
48 |
Deumel, S., van Breemen, A., Gelinck, G., Peeters, B., Maas, J., Verbeek, R., Shanmugam, S., Akkerman, H., Meulenkamp, E., Huerdler, J.E., Acharya, M., Batlle, M.G., Almora, O., Guerrero, A., Belmonte, G.G., Heiss, W., Schmidt, O., Tedde, S.F.: High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nat. Electron. 4(9), 681–688 (2021)
|
49 |
Hunter, D.M., Belev, G., Kasap, S., Yaffe, M.J.: Measured and calculated K-fluorescence effects on the MTF of an amorphousselenium based CCD X-ray detector. Med. Phys. 39, 608–622 (2012)
|
/
〈 |
|
〉 |