RESEARCH ARTICLE

Dissipative Kerr single soliton generation with extremely high probability via spectral mode depletion

  • Boqing Zhang 1 ,
  • Nuo Chen 1 ,
  • Xinda Lu 1 ,
  • Yuntian Chen 1,2 ,
  • Xinliang Zhang 1,2 ,
  • Jing Xu , 1,2
Expand
  • 1. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 14 Feb 2022

Accepted date: 15 May 2022

Published date: 15 Dec 2022

Copyright

2022 The Author(s) 2022

Abstract

Optical Kerr solitons generation based on microresonators is essential in nonlinear optics. Among various soliton generation processes, the single soliton generation plays a pivotal role since it ensures rigorous mode-locking on each comb line whose interval equals the free spectral range (FSR) of the microresonator. Current studies show that single soliton generation is challenging due to cavity instability. Here, we propose a new method to greatly improve single soliton generation probalility in the anomalous group velocity dispersion (GVD) regime in a micro-ring resonator based on silicon nitride. The improvement is realized by introducing mode depletion through an integrated coupled filter. It is convenient to introduce controllable single mode depletion in a micro-ring resonator by adjusting the response function of a coupled filter. We show that spectral mode depletion (SMD) can significantly boost the single soliton generation probability. The effect of SMD on the dynamics of optical Kerr solitons generation are also discussed. The proposed method offers a straightforward and simple way to facilitate robust single soliton generation, and will have an impact on the research development in optical Kerr soliton generation and on-chip optical frequency mode manipulation.

Cite this article

Boqing Zhang , Nuo Chen , Xinda Lu , Yuntian Chen , Xinliang Zhang , Jing Xu . Dissipative Kerr single soliton generation with extremely high probability via spectral mode depletion[J]. Frontiers of Optoelectronics, 2022 , 15(4) : 48 . DOI: 10.1007/s12200-022-00047-y

1
Kippenberg, T.J., Gaeta, A.L., Lipson, M., Gorodetsky, M.L.: Dissipative Kerr solitons in optical microresonators. Science 361(6402), eaan8083 (2018)

DOI

2
Pasquazi, A., Peccianti, M., Razzari, L., Moss, D.J., Coen, S., Erkintalo, M., Chembo, Y.K., Hansson, T., Wabnitz, S., Del’Haye, P., Xue, X., Weiner, A.M., Morandotti, R.: Micro-combs: a novel generation of optical sources. Phys. Rep. 729, 1–81 (2018)

DOI

3
Coddington, I., Newbury, N., Swann, W.: Dual-comb spectros-copy. Optica 3(4), 414–426 (2016)

DOI

4
Suh, M.G., Yang, Q.F., Yang, K.Y., Yi, X., Vahala, K.J.: Micro-resonator soliton dual-comb spectroscopy. Science 354(6312), 600–603 (2016)

DOI

5
Yu, M., Okawachi, Y., Griffith, A.G., Lipson, M., Gaeta, A.L.: Microresonator-based high-resolution gas spectroscopy. Opt. Lett. 42(21), 4442–4445 (2017)

DOI

6
Papp, S.B., Beha, K., Del’Haye, P., Quinlan, F., Lee, H., Vahala, K.J., Diddams, S.A.: Microresonator frequency comb optical clock. Optica 1(1), 10–14 (2014)

DOI

7
Marin-Palomo, P., Kemal, J.N., Karpov, M., Kordts, A., Pfeifle, J., Pfeiffer, M.H.P., Trocha, P., Wolf, S., Brasch, V., Anderson, M.H., Rosenberger, R., Vijayan, K., Freude, W., Kippenberg, T.J., Koos, C.: Microresonator-based solitons for massively parallel coherent optical communications. Nature 546(7657), 274–279 (2017)

DOI

8
Trocha, P., Karpov, M., Ganin, D., Pfeiffer, M.H.P., Kordts, A., Wolf, S., Krockenberger, J., Marin-Palomo, P., Weimann, C., Randel, S., Freude, W., Kippenberg, T.J., Koos, C.: Ultrafast optical ranging using microresonator soliton frequency combs. Science 359(6378), 887–891 (2018)

DOI

9
Suh, M.G., Vahala, K.J.: Soliton microcomb range measurement. Science 359(6378), 884–887 (2018)

DOI

10
Wang, W., Wang, L., Zhang, W.: Advances in soliton micro-comb generation. Adv. Photonics 2(3), 034001(2020)

DOI

11
Guo, H., Karpov, M., Lucas, E., Kordts, A., Pfeiffer, M.H.P., Brasch, V., Lihachev, G., Lobanov, V.E., Gorodetsky, M.L., Kippenberg, T.J.: Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13(1), 94–102 (2017)

DOI

12
Bao, C., Xuan, Y., Leaird, D.E., Wabnitz, S., Qi, M., Weiner, A.M.: Spatial mode-interaction induced single soliton generation in microresonators. Optica 4(9), 1011(2017)

DOI

13
Herr, T., Brasch, V., Jost, J.D., Mirgorodskiy, I., Lihachev, G., Gorodetsky, M.L., Kippenberg, T.J.: Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113(12), 123901(2014)

DOI

14
Zhou, H., Geng, Y., Cui, W., Huang, S.W., Zhou, Q., Qiu, K., Wei Wong, C.: Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl. 8(1), 50(2019)

DOI

15
Liao, M., Zhou, H., Geng, Y., Ling, Y., Wu, B., Qiu, K.: Enhanced single cavity soliton generation in Kerr microresonators via inverse-Kelly sideband. IEEE Photonics J. 9(3), 1–9 (2017)

DOI

16
Xue, X., Zheng, Z., Zhou, B.: Soliton regulation in microcavities induced by fundamental–second-harmonic mode coupling. Photonics Res. 6(10), 948–953 (2018)

DOI

17
Pan, J., Cheng, Z., Huang, T., Song, C., Shum, P.P., Brambilla, G.: Fundamental and third harmonic mode coupling induced single soliton generation in Kerr microresonators. J. Lightwave Technol. 37(21), 5531–5536 (2019)

DOI

18
Perego, A.M., Turitsyn, S.K., Staliunas, K.: Gain through losses in nonlinear optics. Light Sci. Appl. 7(1), 43(2018)

DOI

19
Perego, A.M., Mussot, A., Conforti, M.: Theory of filter-induced modulation instability in driven passive optical resonators. Phys. Rev. A (Coll. Park) 103(1), 013522(2021)

DOI

20
Bessin, F., Perego, A.M., Staliunas, K., Turitsyn, S.K., Kudlinski, A., Conforti, M., Mussot, A.: Gain-through-filtering enables tuneable frequency comb generation in passive optical resonators. Nat. Commun. 10(1), 4489(2019)

DOI

21
Bechhoefer, J.: Kramers-Kronig, Bode, and the meaning of zero. Am. J. Phys. 79(10), 1053–1059 (2011)

DOI

22
Lucarini, V., Peiponen, K., Saarinen, J.J., Vartiainen, E.M.: Kramers- Kronig relations in optical materials research. Springer, Berlin (2005)

23
Coen, S., Randle, H.G., Sylvestre, T., Erkintalo, M.: Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. Opt. Lett. 38(1), 37–39 (2013)

DOI

24
Wang, Y., Leo, F., Fatome, J., Erkintalo, M., Murdoch, S.G., Coen, S.: Universal mechanism for the binding of temporal cavity solitons. Optica 4(8), 855–863 (2017)

DOI

25
Tikan, A., Riemensberger, J., Komagata, K., Hönl, S., Churaev, M., Skehan, C., Guo, H., Wang, R.N., Liu, J., Seidler, P., Kippenberg, T.J.: Emergent nonlinear phenomena in a driven dissipative photonic dimer. Nat. Phys. 17(5), 604–610 (2021)

DOI

26
Guo, X., Zou, C.L., Jiang, L., Tang, H.X.: All-optical control of linear and nonlinear energy transfer via the Zeno effect. Phys. Rev. Lett. 120(20), 203902(2018)

DOI

27
Wang, S., Wang, Q., Wang, W., Wang, X., Yu, M., Fang, Q., Cai, Y.: Pump condition dependent Kerr frequency comb generation in mid-infrared. Results Phys. 15, 102789(2019)

DOI

28
Carmon, T., Yang, L., Vahala, K.: Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12(20), 4742–4750 (2004)

DOI

29
Jiang, X., Yang, L.: Optothermal dynamics in whispering-gallery microresonators. Light Sci. Appl. 9(1), 24(2020)

DOI

30
Godey, C., Balakireva, I.V., Coillet, A., Chembo, Y.K.: Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A 89(6), 063814(2014)

DOI

31
Chen, N., Zhang, B., Yang, H., Lu, X., He, S., Hu, Y., Chen, Y., Zhang, X., Xu, J.: Stability analysis of generalized Lugiato-Lefever equation with lumped filter for Kerr optical soliton generation in anomalous dispersion regime. In: Proceedings of Asian Communication and Photonics Conference (ACP 2021). Shanghai: IEEE, pp. T4A.187 (2022)

DOI

Outlines

/