RESEARCH ARTICLE

Design and simulation of type-I graphene/Si quantum dot superlattice for intermediate-band solar cell applications

  • Masumeh Sarkhoush 1 ,
  • Hassan Rasooli Saghai , 2 ,
  • Hadi Soofi 3
Expand
  • 1. Department of Electrical Engineering, Shabestar Branch, Islamic Azad University, Shabestar 5381637181, Iran
  • 2. Department of Electrical Engineering, Tabriz Branch, Islamic Azad University, Tabriz 5167636137, Iran
  • 3. Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 5166616471, Iran

Received date: 04 Dec 2021

Accepted date: 12 Apr 2022

Published date: 15 Dec 2022

Copyright

2022 The Author(s) 2022

Abstract

Recent experiments suggest graphene-based materials as candidates for use in future electronic and optoelectronic devices. In this study, we propose a new multilayer quantum dot (QD) superlattice (SL) structure with graphene as the core and silicon (Si) as the shell of QD. The Slater–Koster tight-binding method based on Bloch theory is exploited to investigate the band structure and energy states of the graphene/Si QD. Results reveal that the graphene/Si QD is a type-I QD and the ground state is 0.6 eV above the valance band. The results also suggest that the graphene/Si QD can be potentially used to create a sub-bandgap in all Si-based intermediate-band solar cells (IBSC). The energy level hybridization in a SL of graphene/Si QDs is investigated and it is observed that the mini-band formation is under the influence of inter-dot spacing among QDs. To evaluate the impact of the graphene/Si QD SL on the performance of Si-based solar cells, we design an IBSC based on the graphene/Si QD (QDIBSC) and calculate its short-circuit current density (Jsc) and carrier generation rate (G) using the 2D finite difference time domain (FDTD) method. In comparison with the standard Si-based solar cell which records Jsc=16.907mA/cm2 and G=1.48943×1028m-3·s-1, the graphene/Si QD IBSC with 2 layers of QDs presents Jsc=36.4193mA/cm2 and G=7.94192×1028m-3·s-1, offering considerable improvement. Finally, the effects of the number of QD layers (L) and the height of QD (H) on the performance of the graphene/Si QD IBSC are discussed.

Cite this article

Masumeh Sarkhoush , Hassan Rasooli Saghai , Hadi Soofi . Design and simulation of type-I graphene/Si quantum dot superlattice for intermediate-band solar cell applications[J]. Frontiers of Optoelectronics, 2022 , 15(4) : 42 . DOI: 10.1007/s12200-022-00043-2

1
Collazos, L.J., Al Huwayz, M.M., Jakomin, R., Micha, D.N., Pinto, L.D., Kawabata, R.M.S., Pires, M.P.: The role of defects on the performance of quantum dot intermediate band solar cells. J. Photovolt. 11(4), 1022–1031 (2021)

DOI

2
Delamarre, A., Suchet, D., Cavassilas, N., Okada, Y., Sugiyama, M., Guillemoles, J.F.: An electronic ratchet is required in nanostructured intermediate band solar cells. J. Photovolt. 8(6), 1553–1559 (2018)

DOI

3
Islam, A., Das, A., Sarkar, N., Matin, M.A., Amin, N.: Numerical analysis of PbSe/GaAs quantum dot intermediate band solar cell (QDIBSC). In: Proceedings of 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2). pp. 1–6 (2018)

DOI

4
Islam, A.A., Islam, R., Hasan, T., Hossain, E.: Projected performance of InGaAs/GaAs quantum dot solar cell: effects of cap and passivation layers. IEEE Access 8, 212339–212350 (2020)

DOI

5
Martí, A. Cuadra, L., Luque, A.: Quasi-drift diffusion model for the quantum dot intermediate band solar cell. IEEE Transa. Electron Devices 49(9), 1632–1639 (2002)

DOI

6
Robichaud, L., Krich, J.J.: Wurtzite InGaN/GaN quantum dots for intermediate band solar cells. In: Proceedings of 2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). pp. 57–58 (2019)

DOI

7
Rocha, B.V., Jakomin, R., Kawabata, R.M., Dornelas, L.P., Pires, M.P., Souza, P.L.: Transition energy calculation of type II InASP/ InGaP quantum dots for intermediate band solar cells. In: Proceedings of 2019 34th Symposium on Microelectronics Technology and Devices (SBMicro). pp. 1–3 (2019)

DOI

8
Hu, W., Fauzi, M.E., Igarashi, M., Higo, A., Lee M.-Y., Li, Y., Usami, N., Samukawa, S.: Type-II Ge/Si quantum dot superlattice for intermediate-band solar cell applications. In: Proceedings of 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). pp. 1021–1023 (2013)

DOI

9
Lee, M.Y., Tsai, Y.C., Li, Y., Samukawa, S.: Numerical simulation of physical and electrical characteristic of Ge/Si quantum dots based intermediate band solar cell. In: Proceedings of 16th International Conference on Nanotechnology (2016)

DOI

10
Tsai, Y.C., Lee, M.Y., Li, Y., Samukawa, S.: Design and simulation of intermediate band solar cell with ultradense type-II multilayer Ge/Si quantum dot superlattice. IEEE Trans. Electron Devices 64(11), 45474553(2017)

DOI

11
Zhang, X., Zhang, Y., Ye, Z., Li, W., Liao, T., Chen, J.: Graphene-based thermionic solar cells. IEEE Electron Device Lett. 39(2), 383–385 (2018)

DOI

12
Nemala, S., Prathapani, S., Kartikay, P., Bhargava, P., Mallick, S., Bohm, S.: Water-based high shear exfoliated graphene-based semi-transparent stable dye-sensitized solar cells for solar power window application. J. Photovolt. 8(5), 1252–1258 (2018)

DOI

13
Chou, J.C., Chang-Chia, L., Liao, Y.H., Lai, C.H., Nien, Y.H., Kuo, C.H., Ko, C.C.: Fabrication and electrochemical impedance analysis of dye-sensitized solar cells with titanium dioxide compact layer and graphene oxide dye absorption layer. IEEE Trans. Nanotechnol. 18, 461–466 (2019)

DOI

14
Chen, Q., Robertson, A.W., He, K., Gong, C., Yoon, E., Kirkland, A.I., Lee, G.D., Warner, J.H.: Elongated silicon–carbon bonds at graphene edges. ACS Nano 10(1), 142–149 (2015)

DOI

15
Javvaji, B., Shenoy, B.M., Roy Mahapatra, D., Abhilash, R., Hegde, G., Rizwan, M.: Stable configurations of graphene on silicon. Appli. Surface Sci. 414, 25–33 (2017)

DOI

16
Arefinia, Z., Asgari, A.: Optimization study of novel few-layer graphene/silicon quantum dots/silicon hetrojunction olar cell through opt-electrical modelling. J. Quant. Electron. 54(1), 4800106(2018)

DOI

17
Fioretti, A.N., Boccard, M., Monnard, R., Ballif, C.: Low-temperature p-type microcrystalline silicon as carrier selective contact for silicon heterojunction solar cells. J. Photovolt. 9(5), 1158–1165 (2019)

DOI

18
Mirzakhani, M.: Electronic properties and energy levels of graphene quantum dots. University Antwerpen (2017)

19
Lin, I.T., Liu, J.M.: Terahertz frequency-dependent carrier scattering rate and mobility of monolayer and AA-stacked multilayer graphene. IEEE J. Sel. Topics Quant. Electron. 20(1), 122–129 (2014)

DOI

20
Suemitsu, M., Fukidome, H.: Epitaxial graphene on silicon substrate. J. Phy. D: Appl. Phy. 43(37), 374012(2010)

DOI

21
Dang, X., Dong, H., Wang, L., Zhao, Y., Guo, Z., Hou, T., Li, Y., Lee, S.T.: Semiconducting graphene on silicon from first-principle calculation. ACS Nano 9(8), 8562–8568 (2015)

DOI

22
Daukiya, L., Nair, M.N., Cranney, M., Vonau, F., Hajjar-Garreau, S., Aubel, D., Simon, L.: Functionalization of 2D materials by intercalation. Progress in Surface Science 94(1), 1–20 (2018)

DOI

23
Xiang, C., Kong, F., Li, K.: A high-order symplectic FDTD scheme for the Maxwell-Schrodinger system. IEEE J. Quant. Electron. 54(1), 1–8 (2018)

DOI

24
Junaid, M., Witjaksono, G.: Analysis of band gap in AA and AB stacked bilayer graphene by hamiltonian tight binding method. In: Proceedings of International Conference on Sensors and Technology (2019)

DOI

25
Witjaksono, G., Junaid, M.: Analysis of tunable energy band gap of graphene layer. In: Proceedings of 7th International Conference on Photonics (2018)

DOI

26
Xie, G., Huang, Z., Fang, M., Sha, W.E.I.: Simulating Maxwell-Schrödinger equations by high-order symplectic FDTD algorithm. IEEE J. Multiscale and Multihysics Computational Techniques 4, 143–151 (2019)

DOI

27
Zhu L., Akiyama, H., Kanemitsu, Y.: Intrinsic and extrinsic drop in open circuit voltage and conversion efficiency in solar cells with quantum dots embedded in host material. Sci. Rep. 8(1), 11704(2018)

DOI

28
Shaik, A.R., Brinkman, D., Sankin, I., Krasikov, D., Ringhofer, C., Vasileska, D.: A unified 2D solver for modeling carrier and defect transport in photovoltaic devices. In: Proceedings of 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). pp. 1953–1955 (2018)

DOI

29
Shaik, A.R., Brinkman, D., Sankin, I., Ringhofer, C., Krasikov, D., Kang, H., Benes, B., Vasileska, D.: PVRD-FASP: a unified solver for modeling carrier and defect transport in photovoltaic devices. IEEE J. Photovolt. 9(6), 1602–1613 (2019)

DOI

30
Chen, W., Gao, P., Zhou, L., Shi, L.H., Wang, D.W., Hao, R., Ye, J., Yin, W.Y., Li, E.: Carrier dynamics of nanopillar textured ultrathin si film/PEDOT:PSS heterojunction solar cell. IEEE J. Photovolt. 8(3), 757–762 (2018)

DOI

31
Kiziloglu, V., Selcen, T., Saritas, M.: Sizedependent intermediate band energy levels and absorption of bound states in box shaped quantum dots. In: Proceedings of 2018 International Conference on Photovoltaic Science and Technologies (PVCon). pp. 1–4 (2018)

DOI

32
Kim, S.H., Man, M.T., Lee, J.W., Park, K.D., Lee, H.S.: Influence of size and shape anisotropy on optical properties of CdSe quantum dots. Nanomaterials 10(8), 1589(2020)

DOI

Outlines

/