Design and simulation of type-I graphene/Si quantum dot superlattice for intermediate-band solar cell applications
Masumeh Sarkhoush, Hassan Rasooli Saghai, Hadi Soofi
Design and simulation of type-I graphene/Si quantum dot superlattice for intermediate-band solar cell applications
Recent experiments suggest graphene-based materials as candidates for use in future electronic and optoelectronic devices. In this study, we propose a new multilayer quantum dot (QD) superlattice (SL) structure with graphene as the core and silicon (Si) as the shell of QD. The Slater–Koster tight-binding method based on Bloch theory is exploited to investigate the band structure and energy states of the graphene/Si QD. Results reveal that the graphene/Si QD is a type-I QD and the ground state is 0.6 eV above the valance band. The results also suggest that the graphene/Si QD can be potentially used to create a sub-bandgap in all Si-based intermediate-band solar cells (IBSC). The energy level hybridization in a SL of graphene/Si QDs is investigated and it is observed that the mini-band formation is under the influence of inter-dot spacing among QDs. To evaluate the impact of the graphene/Si QD SL on the performance of Si-based solar cells, we design an IBSC based on the graphene/Si QD (QDIBSC) and calculate its short-circuit current density (Jsc) and carrier generation rate (G) using the 2D finite difference time domain (FDTD) method. In comparison with the standard Si-based solar cell which records and , the graphene/Si QD IBSC with 2 layers of QDs presents and , offering considerable improvement. Finally, the effects of the number of QD layers (L) and the height of QD (H) on the performance of the graphene/Si QD IBSC are discussed.
Graphene/silicon quantum dot / Intermediate-band / Solar cell / Superlattice
[1] |
Collazos, L.J., Al Huwayz, M.M., Jakomin, R., Micha, D.N., Pinto, L.D., Kawabata, R.M.S., Pires, M.P.: The role of defects on the performance of quantum dot intermediate band solar cells. J. Photovolt. 11(4), 1022–1031 (2021)
CrossRef
Google scholar
|
[2] |
Delamarre, A., Suchet, D., Cavassilas, N., Okada, Y., Sugiyama, M., Guillemoles, J.F.: An electronic ratchet is required in nanostructured intermediate band solar cells. J. Photovolt. 8(6), 1553–1559 (2018)
CrossRef
Google scholar
|
[3] |
Islam, A., Das, A., Sarkar, N., Matin, M.A., Amin, N.: Numerical analysis of PbSe/GaAs quantum dot intermediate band solar cell (QDIBSC). In: Proceedings of 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2). pp. 1–6 (2018)
CrossRef
Google scholar
|
[4] |
Islam, A.A., Islam, R., Hasan, T., Hossain, E.: Projected performance of InGaAs/GaAs quantum dot solar cell: effects of cap and passivation layers. IEEE Access 8, 212339–212350 (2020)
CrossRef
Google scholar
|
[5] |
Martí, A. Cuadra, L., Luque, A.: Quasi-drift diffusion model for the quantum dot intermediate band solar cell. IEEE Transa. Electron Devices 49(9), 1632–1639 (2002)
CrossRef
Google scholar
|
[6] |
Robichaud, L., Krich, J.J.: Wurtzite InGaN/GaN quantum dots for intermediate band solar cells. In: Proceedings of 2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). pp. 57–58 (2019)
CrossRef
Google scholar
|
[7] |
Rocha, B.V., Jakomin, R., Kawabata, R.M., Dornelas, L.P., Pires, M.P., Souza, P.L.: Transition energy calculation of type II InASP/ InGaP quantum dots for intermediate band solar cells. In: Proceedings of 2019 34th Symposium on Microelectronics Technology and Devices (SBMicro). pp. 1–3 (2019)
CrossRef
Google scholar
|
[8] |
Hu, W., Fauzi, M.E., Igarashi, M., Higo, A., Lee M.-Y., Li, Y., Usami, N., Samukawa, S.: Type-II Ge/Si quantum dot superlattice for intermediate-band solar cell applications. In: Proceedings of 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). pp. 1021–1023 (2013)
CrossRef
Google scholar
|
[9] |
Lee, M.Y., Tsai, Y.C., Li, Y., Samukawa, S.: Numerical simulation of physical and electrical characteristic of Ge/Si quantum dots based intermediate band solar cell. In: Proceedings of 16th International Conference on Nanotechnology (2016)
CrossRef
Google scholar
|
[10] |
Tsai, Y.C., Lee, M.Y., Li, Y., Samukawa, S.: Design and simulation of intermediate band solar cell with ultradense type-II multilayer Ge/Si quantum dot superlattice. IEEE Trans. Electron Devices 64(11), 45474553(2017)
CrossRef
Google scholar
|
[11] |
Zhang, X., Zhang, Y., Ye, Z., Li, W., Liao, T., Chen, J.: Graphene-based thermionic solar cells. IEEE Electron Device Lett. 39(2), 383–385 (2018)
CrossRef
Google scholar
|
[12] |
Nemala, S., Prathapani, S., Kartikay, P., Bhargava, P., Mallick, S., Bohm, S.: Water-based high shear exfoliated graphene-based semi-transparent stable dye-sensitized solar cells for solar power window application. J. Photovolt. 8(5), 1252–1258 (2018)
CrossRef
Google scholar
|
[13] |
Chou, J.C., Chang-Chia, L., Liao, Y.H., Lai, C.H., Nien, Y.H., Kuo, C.H., Ko, C.C.: Fabrication and electrochemical impedance analysis of dye-sensitized solar cells with titanium dioxide compact layer and graphene oxide dye absorption layer. IEEE Trans. Nanotechnol. 18, 461–466 (2019)
CrossRef
Google scholar
|
[14] |
Chen, Q., Robertson, A.W., He, K., Gong, C., Yoon, E., Kirkland, A.I., Lee, G.D., Warner, J.H.: Elongated silicon–carbon bonds at graphene edges. ACS Nano 10(1), 142–149 (2015)
CrossRef
Google scholar
|
[15] |
Javvaji, B., Shenoy, B.M., Roy Mahapatra, D., Abhilash, R., Hegde, G., Rizwan, M.: Stable configurations of graphene on silicon. Appli. Surface Sci. 414, 25–33 (2017)
CrossRef
Google scholar
|
[16] |
Arefinia, Z., Asgari, A.: Optimization study of novel few-layer graphene/silicon quantum dots/silicon hetrojunction olar cell through opt-electrical modelling. J. Quant. Electron. 54(1), 4800106(2018)
CrossRef
Google scholar
|
[17] |
Fioretti, A.N., Boccard, M., Monnard, R., Ballif, C.: Low-temperature p-type microcrystalline silicon as carrier selective contact for silicon heterojunction solar cells. J. Photovolt. 9(5), 1158–1165 (2019)
CrossRef
Google scholar
|
[18] |
Mirzakhani, M.: Electronic properties and energy levels of graphene quantum dots. University Antwerpen (2017)
|
[19] |
Lin, I.T., Liu, J.M.: Terahertz frequency-dependent carrier scattering rate and mobility of monolayer and AA-stacked multilayer graphene. IEEE J. Sel. Topics Quant. Electron. 20(1), 122–129 (2014)
CrossRef
Google scholar
|
[20] |
Suemitsu, M., Fukidome, H.: Epitaxial graphene on silicon substrate. J. Phy. D: Appl. Phy. 43(37), 374012(2010)
CrossRef
Google scholar
|
[21] |
Dang, X., Dong, H., Wang, L., Zhao, Y., Guo, Z., Hou, T., Li, Y., Lee, S.T.: Semiconducting graphene on silicon from first-principle calculation. ACS Nano 9(8), 8562–8568 (2015)
CrossRef
Google scholar
|
[22] |
Daukiya, L., Nair, M.N., Cranney, M., Vonau, F., Hajjar-Garreau, S., Aubel, D., Simon, L.: Functionalization of 2D materials by intercalation. Progress in Surface Science 94(1), 1–20 (2018)
CrossRef
Google scholar
|
[23] |
Xiang, C., Kong, F., Li, K.: A high-order symplectic FDTD scheme for the Maxwell-Schrodinger system. IEEE J. Quant. Electron. 54(1), 1–8 (2018)
CrossRef
Google scholar
|
[24] |
Junaid, M., Witjaksono, G.: Analysis of band gap in AA and AB stacked bilayer graphene by hamiltonian tight binding method. In: Proceedings of International Conference on Sensors and Technology (2019)
CrossRef
Google scholar
|
[25] |
Witjaksono, G., Junaid, M.: Analysis of tunable energy band gap of graphene layer. In: Proceedings of 7th International Conference on Photonics (2018)
CrossRef
Google scholar
|
[26] |
Xie, G., Huang, Z., Fang, M., Sha, W.E.I.: Simulating Maxwell-Schrödinger equations by high-order symplectic FDTD algorithm. IEEE J. Multiscale and Multihysics Computational Techniques 4, 143–151 (2019)
CrossRef
Google scholar
|
[27] |
Zhu L., Akiyama, H., Kanemitsu, Y.: Intrinsic and extrinsic drop in open circuit voltage and conversion efficiency in solar cells with quantum dots embedded in host material. Sci. Rep. 8(1), 11704(2018)
CrossRef
Google scholar
|
[28] |
Shaik, A.R., Brinkman, D., Sankin, I., Krasikov, D., Ringhofer, C., Vasileska, D.: A unified 2D solver for modeling carrier and defect transport in photovoltaic devices. In: Proceedings of 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). pp. 1953–1955 (2018)
CrossRef
Google scholar
|
[29] |
Shaik, A.R., Brinkman, D., Sankin, I., Ringhofer, C., Krasikov, D., Kang, H., Benes, B., Vasileska, D.: PVRD-FASP: a unified solver for modeling carrier and defect transport in photovoltaic devices. IEEE J. Photovolt. 9(6), 1602–1613 (2019)
CrossRef
Google scholar
|
[30] |
Chen, W., Gao, P., Zhou, L., Shi, L.H., Wang, D.W., Hao, R., Ye, J., Yin, W.Y., Li, E.: Carrier dynamics of nanopillar textured ultrathin si film/PEDOT:PSS heterojunction solar cell. IEEE J. Photovolt. 8(3), 757–762 (2018)
CrossRef
Google scholar
|
[31] |
Kiziloglu, V., Selcen, T., Saritas, M.: Sizedependent intermediate band energy levels and absorption of bound states in box shaped quantum dots. In: Proceedings of 2018 International Conference on Photovoltaic Science and Technologies (PVCon). pp. 1–4 (2018)
CrossRef
Google scholar
|
[32] |
Kim, S.H., Man, M.T., Lee, J.W., Park, K.D., Lee, H.S.: Influence of size and shape anisotropy on optical properties of CdSe quantum dots. Nanomaterials 10(8), 1589(2020)
CrossRef
Google scholar
|
/
〈 | 〉 |