RESEARCH ARTICLE

Ligand exchange engineering of FAPbI3 perovskite quantum dots for solar cells

  • Wentao Fan ,
  • Qiyuan Gao ,
  • Xinyi Mei ,
  • Donglin Jia ,
  • Jingxuan Chen ,
  • Junming Qiu ,
  • Qisen Zhou ,
  • Xiaoliang Zhang
Expand
  • School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Received date: 13 May 2022

Accepted date: 29 Jun 2022

Published date: 15 Sep 2022

Copyright

2022 The Author(s) 2022

Abstract

Formamidinium lead triiodide (FAPbI3) perovskite quantum dots (PQDs) show great advantages in photovoltaic applications due to their ideal bandgap energy, high stability and solution processability. The anti-solvent used for the post-treatment of FAPbI3 PQD solid films significantly affects the surface chemistry of the PQDs, and thus the vacancies caused by surface ligand removal inhibit the optoelectronic properties and stability of PQDs. Here, we study the effects of different anti-solvents with different polarities on FAPbI3 PQDs and select a series of organic molecules for surface passivation of PQDs. The results show that methyl acetate could effectively remove surface ligands from the PQD surface without destroying its crystal structure during the post-treatment. The benzamidine hydrochloride (PhFACl) applied as short ligands of PQDs during the post-treatment could fill the A-site and X-site vacancies of PQDs and thus improve the electronic coupling of PQDs. Finally, the PhFACl-based PQD solar cell (PQDSC) achieves a power conversion efficiency of 6.4%, compared to that of 4.63% for the conventional PQDSC. This work provides a reference for insights into the surface passivation of PQDs and the improvement in device performance of PQDSCs.

Cite this article

Wentao Fan , Qiyuan Gao , Xinyi Mei , Donglin Jia , Jingxuan Chen , Junming Qiu , Qisen Zhou , Xiaoliang Zhang . Ligand exchange engineering of FAPbI3 perovskite quantum dots for solar cells[J]. Frontiers of Optoelectronics, 2022 , 15(3) : 39 . DOI: 10.1007/s12200-022-00038-z

1
Hui, W., Chao, L., Lu, H., Xia, F., Wei, Q., Su, Z., Niu, T., Tao, L., Du, B., Li, D., Wang, Y., Dong, H., Zuo, S., Li, B., Shi, W., Ran, X., Li, P., Zhang, H., Wu, Z., Ran, C., Song, L., Xing, G., Gao, X., Zhang, J., Xia, Y., Chen, Y., Huang, W.: Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science 371, 1359–1364 (2021)

DOI

2
Zhang, F., Ma, Z., Shi, Z., Chen, X., Wu, D., Li, X., Shan, C.: Recent advances and opportunities of lead-free perovskite nanocrystal for optoelectronic application. Energy Mater. Adv. 2021, 1–38 (2021)

DOI

3
Chen, J.X., Zheng, S.Y., Jia, D.L., Liu, W.L., Andruszkiewicz, A., Qin, C.C., Yu, M., Liu, J.H., Johansson, E.M.J., Zhang, X.L.: Regulating thiol ligands of p-type colloidal quantum dots for efficient infrared solar cells. Acs Energy Lett. 6, 1970–1989 (2021)

DOI

4
Zheng, S.Y., Wang, Y.F., Jia, D.L., Tian, L., Chen, J.X., Shan, L.W., Dong, L.M., Zhang, X.L.: Strong coupling of colloidal quantum dots via self-assemble passivation for efficient infrared solar cells. Adv. Mater. Interfaces 8, 2100489 (2021)

DOI

5
Yang, H., Gutiérrez-Arzaluz, L., Maity, P., Abdulhamid, M.A., Yin, J., Zhou, Y., Chen, C., Han, Y., Szekely, G., Bakr, O.M., Mohammed, O.F.: Air-resistant lead halide perovskite nanocrystals embedded into polyimide of intrinsic microporosity. Energy Mater. Adv. 2021, 1–9 (2021)

DOI

6
Wang, Y., Mei, X., Qiu, J., Zhou, Q., Jia, D., Yu, M., Liu, J., Zhang, X.: Insight into the interface engineering of a SnO2/FAPbI3 perovskite using lead halide as an interlayer: a first-principles study. J. Phys. Chem. Lett. 12, 11330–11338 (2021)

DOI

7
Shan, S., Li, Y., Wu, H., Chen, T., Niu, B., Zhang, Y., Wang, D., Kan, C., Yu, X., Zuo, L., Chen, H.: Manipulating the film morphology evolution toward green solvent-processed perovskite solar cells. SusMat 1, 537–544 (2021)

DOI

8
Wang, Y., Liu, J., Yu, M., Zhong, J., Zhou, Q., Qiu, J., Zhang, X.: SnO2 surface halogenation to improve photovoltaic performance of perovskite solar cells. Acta Phys.-Chim. Sin. 37, 2006030 (2021)

DOI

9
Zhang, D., Fan, B., Ying, L., Li, N., Brabec, C.J., Huang, F., Cao, Y.: Recent progress in thick-film organic photovoltaic devices: materials, devices, and processing. SusMat 1, 4–23 (2021)

DOI

10
Zou, G., Chen, Z., Li, Z., Yip, H.-L.: Blue perovskite light-emitting diodes: opportunities and challenges. Acta Phys.-Chim. Sin. 37, 2009002 (2021)

DOI

11
Mei, X., Jia, D., Chen, J., Zheng, S., Zhang, X.: Approaching high-performance light-emitting devices upon perovskite quantum dots: advances and prospects. Nano Today 43, 101449 (2022)

DOI

12
Bi, C.H., Kershaw, S.V., Rogach, A.L., Tian, J.J.: Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol. Adv. Funct. Mater. 29, 1902446 (2019)

DOI

13
Zheng, C., Liu, A., Bi, C., Tian, J.: SCN-doped CsPbI3 for improving stability and photodetection performance of colloidal quantum dots. Acta Phys.-Chim. Sin. 37, 2007084 (2021)

DOI

14
Wu, J., Li, Y., Shi, J., Wu, H., Luo, Y., Li, D., Meng, Q.: UV photodetectors based on high quality CsPbCl3 film prepared by a two-step diffusion method. Acta Phys.-Chim. Sin. 37, 2004041 (2021)

DOI

15
Jia, D., Chen, J., Mei, X., Fan, W., Luo, S., Yu, M., Liu, J., Zhang, X.: Surface matrix curing of inorganic CsPbI3 perovskite quantum dots for solar cells with efficiency over 16%. Energy Environ. Sci. 14, 4599–4609 (2021)

DOI

16
Chen, J., Jia, D., Johansson, E.M.J., Hagfeldt, A., Zhang, X.: Emerging perovskite quantum dot solar cells: feasible approaches to boost performance. Energy Environ. Sci. 14, 224–261 (2021)

DOI

17
Swarnkar, A., Marshall, A.R., Sanehira, E.M., Chernomordik, B.D., Moore, D.T., Christians, J.A., Chakrabarti, T., Luther, J.M.: Quantum dot-induced phase stabilization of alpha-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016)

DOI

18
Chen, K.Q., Zhong, Q.H., Chen, W., Sang, B.H., Wang, Y.W., Yang, T.Q., Liu, Y.L., Zhang, Y.P., Zhang, H.: Short-chain ligandpassivated stable alpha-CsPbI2 quantum dot for all-inorganic perovskite solar cells. Adv. Funct. Mater. 29, 1900991 (2019)

DOI

19
Shi, J.W., Li, F.C., Jin, Y., Liu, C., Cohen-Kleinstein, B., Yuan, S., Li, Y.Y., Wang, Z.K., Yuan, J.Y., Ma, W.L.: In situ ligand bonding management of CsPbI3 perovskite quantum dots enables high-performance photovoltaics and red light-emitting diodes. Angew. Chem. Int. Ed. 59, 22230–22237 (2020)

DOI

20
Qian, Y.L., Shi, Y., Shi, G.Y., Shi, G.Z., Zhang, X.L., Yuan, L., Zhong, Q.X., Liu, Y., Wang, Y., Ling, X.F., Li, F.C., Cao, M.H., Li, S.J., Zhang, Q., Liu, Z.K., Ma, W.L.: The impact of precursor ratio on the synthetic production, surface chemistry, and photovoltaic performance of CsPbI3 perovskite quantum dots. Sol. RRL 5, 2100090 (2021)

DOI

21
Sanehira, E.M., Marshall, A.R., Christians, J.A., Harvey, S.P., Ciesielski, P.N., Wheeler, L.M., Schulz, P., Lin, L.Y., Beard, M.C., Luther, J.M.: Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 3, eaao4204 (2017)

DOI

22
Wheeler, L.M., Sanehira, E.M., Marshall, A.R., Schulz, P., Suri, M., Anderson, N.C., Christians, J.A., Nordlund, D., Sokaras, D., Kroll, T., Harvey, S.P., Berry, J.J., Lin, L.Y., Luther, J.M.: Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. J. Am. Chem. Soc. 140, 10504–10513 (2018)

DOI

23
Zhang, L., Kang, C., Zhang, G., Pan, Z., Huang, Z., Xu, S., Rao, H., Liu, H., Wu, S., Wu, X., Li, X., Zhu, Z., Zhong, X., Jen, A.K.Y.: All-inorganic CsPbI3 quantum dot solar cells with efficiency over 16% by defect control. Adv. Funct. Mater. 31, 2100090 (2020)

DOI

24
Wang, Y., Yuan, J.Y., Zhang, X.L., Ling, X.F., Larson, B.W., Zhao, Q., Yang, Y.G., Shi, Y., Luther, J.M., Ma, W.L.: Surface ligand management aided by a secondary amine enables increased synthesis yield of CsPbI3 perovskite quantum dots and high photovoltaic performance. Adv. Mater. 32, 2000449 (2020)

DOI

25
Chen, J.X., Jia, D.L., Qiu, J.M., Zhuang, R.S., Hua, Y., Zhang, X.L.: Multidentate passivation crosslinking perovskite quantum dots for efficient solar cells. Nano Energy 96, 107140 (2022)

DOI

26
Yuan, J., Ling, X., Yang, D., Li, F., Zhou, S., Shi, J., Qian, Y., Hu, J., Sun, Y., Yang, Y., Gao, X., Duhm, S., Zhang, Q., Ma, W.: Band-aligned polymeric hole transport materials for extremely low energy loss α-CsPbI3 perovskite nanocrystal solar cells. Joule. 2, 2450–2463 (2018)

DOI

27
Zhao, Q., Hazarika, A., Chen, X., Harvey, S.P., Larson, B.W., Teeter, G.R., Liu, J., Song, T., Xiao, C., Shaw, L., Zhang, M., Li, G., Beard, M.C., Luther, J.M.: High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nat. Commun. 10, 2842 (2019)

DOI

28
Chen, K., Jin, W., Zhang, Y., Yang, T., Reiss, P., Zhong, Q., Bach, U., Li, Q., Wang, Y., Zhang, H., Bao, Q., Liu, Y.: High efficiency mesoscopic solar cells using CsPbI3 perovskite quantum dots enabled by chemical interface engineering. J. Am. Chem. Soc. 142, 3775–3783 (2020)

DOI

29
Hu, L., Zhao, Q., Huang, S., Zheng, J., Guan, X., Patterson, R., Kim, J., Shi, L., Lin, C.H., Lei, Q., Chu, D., Tao, W., Cheong, S., Tilley, R.D., Ho-Baillie, A.W.Y., Luther, J.M., Yuan, J., Wu, T.: Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat. Commun. 12, 466 (2021)

DOI

30
Hao, M., Bai, Y., Zeiske, S., Ren, L., Liu, J., Yuan, Y., Zarrabi, N., Cheng, N., Ghasemi, M., Chen, P., Lyu, M., He, D., Yun, J.-H., Du, Y., Wang, Y., Ding, S., Armin, A., Meredith, P., Liu, G., Cheng, H.-M., Wang, L.: Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 5, 79–88 (2020)

DOI

31
Xue, J., Lee, J.-W., Dai, Z., Wang, R., Nuryyeva, S., Liao, M.E., Chang, S.-Y., Meng, L., Meng, D., Sun, P., Lin, O., Goorsky, M.S., Yang, Y.: Surface ligand management for stable FAPbI3 perovskite quantum dot solar cells. Joule. 2, 1866–1878 (2018)

DOI

32
Xue, J., Wang, R., Chen, L., Nuryyeva, S., Han, T.H., Huang, T., Tan, S., Zhu, J., Wang, M., Wang, Z.K., Zhang, C., Lee, J.W., Yang, Y.: A small-molecule, „charge driver” enables perovskite quantum dot solar cells with efficiency approaching 13%. Adv. Mater. 31, e1900111 (2019)

DOI

33
Li, F., Zhou, S., Yuan, J., Qin, C., Yang, Y., Shi, J., Ling, X., Li, Y., Ma, W.: Perovskite quantum dot solar cells with 15.6% efficiency and improved stability enabled by an α-CsPbI3/FAPbI3 bilayer structure. Acs Energy Lett. 4, 2571–2578 (2019)

DOI

34
Ji, K., Yuan, J.B., Li, F.C., Shi, Y., Ling, X.F., Zhang, X.L., Zhang, Y.N., Lu, H.Y., Yuan, J.Y., Ma, W.L.: High-efficiency perovskite quantum dot solar cells benefiting from a conjugated polymer-quantum dot bulk heterojunction connecting layer. J. Mater. Chem. A 8, 8104–8112 (2020)

DOI

35
Ling, X., Yuan, J., Zhang, X., Qian, Y., Zakeeruddin, S.M., Larson, B.W., Zhao, Q., Shi, J., Yang, J., Ji, K., Zhang, Y., Wang, Y., Zhang, C., Duhm, S., Luther, J.M., Gratzel, M., Ma, W.: Guanidinium-assisted surface matrix engineering for highly efficient perovskite quantum dot photovoltaics. Adv. Mater. 32, e2001906 (2020)

DOI

36
Protesescu, L., Yakunin, S., Kumar, S., Bar, J., Bertolotti, F., Masciocchi, N., Guagliardi, A., Grotevent, M., Shorubalko, I., Bodnarchuk, M.I., Shih, C.J., Kovalenko, M.V.: Dismantling the „Red Wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium-cesium lead iodide nanocrystals. ACS Nano 11, 3119–3134 (2017)

DOI

37
Qiu, J., Zhou, Q., Jia, D., Wang, Y., Li, S., Zhang, X.: Robust molecular-dipole-induced surface functionalization of inorganic perovskites for efficient solar cells. J. Mater. Chem. A 10, 1821–1830 (2022)

DOI

38
El-Ballouli, A.O., Bakr, O.M., Mohammeed, O.F.: Compositional, processing, and interfacial engineering of nanocrystal- and quantum- dot-based perovskite solar cells. Chem. Mater. 31, 6387–6411 (2019)

DOI

39
Hazarika, A., Zhao, Q., Gaulding, E.A., Christians, J.A., Dou, B., Marshall, A.R., Moot, T., Berry, J.J., Johnson, J.C., Luther, J.M.: Perovskite quantum dot photovoltaic materials beyond the reach of thin films: full-range tuning of a-site cation composition. ACS Nano 12, 10327–10337 (2018)

DOI

40
Levchuk, I., Osvet, A., Tang, X., Brandl, M., Perea, J.D., Hoegl, F., Matt, G.J., Hock, R., Batentschuk, M., Brabec, C.J.: Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X = Cl, Br, I) colloidal nanocrystals. Nano Lett. 17, 2765–2770 (2017)

DOI

41
Lu, H., Liu, Y., Ahlawat, P., Mishra, A., Tress, W.R., Eickemeyer, F.T., Yang, Y., Fu, F., Wang, Z., Avalos, C.E., Carlsen, B.I., Agarwalla, A., Zhang, X., Li, X., Zhan, Y., Zakeeruddin, S.M., Emsley, L., Rothlisberger, U., Zheng, L., Hagfeldt, A., Gratzel, M.: Vaporassisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science (2020)

DOI

42
Rothmann, M.U., Kim, J.S., Borchert, J., Lohmann, K.B., O’Leary, C.M., Sheader, A.A., Clark, L., Snaith, H.J., Johnston, M.B., Nellist, P.D., Herz, L.M.: Atomic-scale microstructure of metal halide perovskite. Science 370, 548 (2020)

DOI

43
Jia, D., Chen, J., Qiu, J., Ma, H., Yu, M., Liu, J., Zhang, X.: Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 16.5%. Joule. 6, 1632–1653 (2022)

DOI

44
Imran, M., Caligiuri, V., Wang, M., Goldoni, L., Prato, M., Krahne, R., De Trizio, L., Manna, L.: Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals. J. Am. Chem. Soc. 140, 2656–2664 (2018)

DOI

45
Huang, H., Li, Y., Tong, Y., Yao, E.P., Feil, M.W., Richter, A.F., Doblinger, M., Rogach, A.L., Feldmann, J., Polavarapu, L.: Spontaneous crystallization of perovskite nanocrystals in nonpolar organic solvents: a versatile approach for their shapecontrolled synthesis. Angew. Chem. Int. Ed. 58, 16558–16562 (2019)

DOI

46
Ling, X.F., Zhou, S.J., Yuan, J.Y., Shi, J.W., Qian, Y.L., Larson, B.W., Zhao, Q., Qin, C.C., Li, F.C., Shi, G.Z., Stewart, C., Hu, J.X., Zhang, X.L., Luther, J.M., Duhm, S., Ma, W.L.: 14.1% CsPbI3 perovskite quantum dot solar cells via cesium cation passivation. Adv. Energy Mater. 9, 1900721 (2019)

DOI

47
Kim, J., Koo, B., Kim, W.H., Choi, J., Choi, C., Lim, S.J., Lee, J.S., Kim, D.H., Ko, M.J., Kim, Y.: Alkali acetate-assisted enhanced electronic coupling in CsPbI3 perovskite quantum dot solids for improved photovoltaics. Nano Energy 66, 104130 (2019)

DOI

48
Kim, J., Cho, S., Dinic, F., Choi, J., Choi, C., Jeong, S.M., Lee, J.S., Voznyy, O., Ko, M.J., Kim, Y.: Hydrophobic stabilizeranchored fully inorganic perovskite quantum dots enhance moisture resistance and photovoltaic performance. Nano Energy 75, 104985 (2020)

DOI

49
Jia, D., Chen, J., Yu, M., Liu, J., Johansson, E.M.J., Hagfeldt, A., Zhang, X.: Dual passivation of CsPbI3 perovskite nanocrystals with amino acid ligands for efficient quantum dot solar cells. Small 16, e2001772 (2020)

DOI

50
Liu, T., Guo, J., Lu, D., Xu, Z., Fu, Q., Zheng, N., Xie, Z., Wan, X., Zhang, X., Liu, Y., Chen, Y.: Spacer engineering using aromatic formamidinium in 2D/3D hybrid perovskites for highly efficient solar cells. ACS Nano 15, 7811–7820 (2021)

DOI

51
Li, Q., Dong, Y., Lv, G., Liu, T., Lu, D., Zheng, N., Dong, X., Xu, Z., Xie, Z., Liu, Y.: Fluorinated aromatic formamidinium spacers boost efficiency of layered ruddlesden-popper perovskite solar cells. Acs Energy Lett. 6, 2072–2080 (2021)

DOI

52
Yoon, Y.J., Lee, K.T., Lee, T.K., Kim, S.H., Shin, Y.S., Walker, B., Park, S.Y., Heo, J., Lee, J., Kwak, S.K., Kim, G.H., Kim, J.Y.: Reversible, full-color luminescence by post-treatment of perovskite nanocrystals. Joule. 2, 2105–2116 (2018)

DOI

53
Suri, M., Hazarika, A., Larson, B.W., Zhao, Q., Vallés-Pelarda, M., Siegler, T.D., Abney, M.K., Ferguson, A.J., Korgel, B.A., Luther, J.M.: Enhanced open-circuit voltage of wide-bandgap perovskite photovoltaics by using alloyed (FA1–xCsx)Pb(I1–xBrx)3 quantum dots. Acs Energy Lett. 4, 1954–1960 (2019)

DOI

54
Yang, S., Dai, J., Yu, Z., Shao, Y., Zhou, Y., Xiao, X., Zeng, X.C., Huang, J.: Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc. 141, 5781–5787 (2019)

DOI

55
Wang, Q., Jin, Z., Chen, D., Bai, D., Bian, H., Sun, J., Zhu, G., Wang, G., Liu, S.F.: µ-Graphene crosslinked CsPbI3 quantum dots for high efficiency solar cells with much improved stability. Adv Energy Mater. 8, 1800007 (2018)

DOI

56
Zhou, Q., Qiu, J., Wang, Y., Yu, M., Liu, J., Zhang, X.: Multifunctional chemical bridge and defect passivation for highly efficient inverted perovskite solar cells. Acs Energy Lett. 6, 1596–1606 (2021)

DOI

57
Jia, D.L., Chen, J.X., Zheng, S.Y., Phuyal, D., Yu, M., Tian, L., Liu, J.H., Karis, O., Rensmo, H., Johansson, E.M.J., Zhang, X.: Highly stabilized quantum dot ink for efficient infrared light absorbing solar cells. Adv. Energy Mater. 9, 1902809 (2019)

DOI

Outlines

/