RESEARCH ARTICLE

Flexible thermochromic fabrics enabling dynamic colored display

  • Pan Li 1 ,
  • Zhihui Sun 1 ,
  • Rui Wang 1,2 ,
  • Yuchen Gong 2 ,
  • Yingting Zhou 2 ,
  • Yuwei Wang 1 ,
  • Xiaojuan Liu 4 ,
  • Xianjun Zhou 1 ,
  • Ju Ouyang 1 ,
  • Mingzhi Chen 4 ,
  • Chong Hou 1,3 ,
  • Min Chen 1,2 ,
  • Guangming Tao , 1,4
Expand
  • 1. Wuhan National Laboratory for Optoelectronics and Sport and Health Initiative, Optical Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2. School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
  • 3. School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 4. State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 26 Apr 2022

Accepted date: 14 Jun 2022

Published date: 15 Sep 2022

Copyright

2022 The Author(s) 2022

Abstract

Color-changeable fibers can provide diverse functions for intelligent wearable devices such as novel information displays and human–machine interfaces when woven into fabric. This work develops a low-cost, effective, and scalable strategy to produce thermochromic fibers by wet spinning. Through a combination of different thermochromic microcapsules, flexible fibers with abundant and reversible color changes are obtained. These color changes can be clearly observed by the naked eye. It is also found that the fibers exhibit excellent color-changing stability even after 8000 thermal cycles. Moreover, the thermochromic fibers can be fabricated on a large scale and easily woven or implanted into various fabrics with good mechanical performance. Driven by their good mechanical and physical characteristics, applications of thermochromic fibers in dynamic colored display are demonstrated. Dynamic quick response (QR) code display and recognition are successfully realized with thermochromic fabrics. This work well confirms the potential applications of thermochromic fibers in smart textiles, wearable devices, flexible displays, and human–machine interfaces.

Cite this article

Pan Li , Zhihui Sun , Rui Wang , Yuchen Gong , Yingting Zhou , Yuwei Wang , Xiaojuan Liu , Xianjun Zhou , Ju Ouyang , Mingzhi Chen , Chong Hou , Min Chen , Guangming Tao . Flexible thermochromic fabrics enabling dynamic colored display[J]. Frontiers of Optoelectronics, 2022 , 15(3) : 40 . DOI: 10.1007/s12200-022-00042-3

1
Koo, J.H., Kim, D.C., Shim, H.J., Kim, T.H., Kim, D.H.: Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv. Funct. Mater. 28(35), 1801834 (2018)

DOI

2
Chen, M., Jiang, Y., Guizani, N., Zhou, J., Tao, G., Yin, J., Hwang, K.: Living with I-Fabric: smart living powered by intelligent fabric and deep analytics. IEEE Netw. 34(5), 156–163 (2020)

DOI

3
Shi, X., Zuo, Y., Zhai, P., Shen, J., Yang, Y., Gao, Z., Liao, M., Wu, J., Wang, J., Xu, X., Tong, Q., Zhang, B., Wang, B., Sun, X., Zhang, L., Pei, Q., Jin, D., Chen, P., Peng, H.: Large-area display textiles integrated with functional systems. Nature 591(7849), 240–245 (2021)

DOI

4
Chen, M., Zhou, J., Tao, G., Yang, J., Hu, L.: Wearable affective robot. IEEE Access 6, 64766–64776 (2018)

DOI

5
Yang, J., Zhou, J., Tao, G., Alrashoud, M., Mutib, K.N., Al-Hammadi, M.: Wearable 3.0: from smart clothing to wearable affective robot. IEEE Netw. 33(6), 8–14 (2019)

DOI

6
Li, S., Liu, D., Tian, N., Liang, Y., Gao, C., Wang, S., Zhang, Y.: High-performance temperature sensor based on silver nanowires. Mater. Today Commun. 20, 100546 (2019)

DOI

7
Geng, X., Li, W., Wang, Y., Lu, J., Wang, J., Wang, N., Li, J., Zhang, X.: Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing. Appl. Energy 217, 281–294 (2018)

DOI

8
Zhang, W., Ji, X., Zeng, C., Chen, K., Yin, Y., Wang, C.: A new approach for the preparation of durable and reversible color changing polyester fabrics using thermochromic leuco dye-loaded silica nanocapsules. J. Mater. Chem. C 5(32), 32 (2017)

DOI

9
Isapour, G., Lattuada, M.: Bioinspired stimuli-responsive colorchanging systems. Adv. Mater. 30(19), e1707069 (2018)

DOI

10
Gong, X., Hou, C., Zhang, Q., Li, Y., Wang, H.: Thermochromic hydrogel-functionalized textiles for synchronous visual monitoring of on-demand in vitro drug release. ACS Appl. Mater. Interfaces 12(46), 51225–51235 (2020)

DOI

11
Chen, Y., Xi, Y., Ke, Y., Li, W., Long, Y., Li, J., Wang, L.N., Zhang, X.: A skin-like stretchable colorimetric temperature sensor. Sci. China Mater. 61(7), 969–976 (2018)

DOI

12
Wang, Y., Ren, J., Ye, C., Pei, Y., Ling, S.: Thermochromic silks for temperature management and dynamic textile displays. Nano-Micro. Lett. 13(1), 72 (2021)

DOI

13
Chen, H.J., Huang, L.H.: An investigation of the design potential of thermochromic home textiles used with electric heating techniques. Math. Probl. Eng. 2015, 151573 (2015)

DOI

14
Yetisen, A.K., Qu, H., Manbachi, A., Butt, H., Dokmeci, M.R., Hinestroza, J.P., Skorobogatiy, M., Khademhosseini, A., Yun, S.H.: Nanotechnology in textiles. ACS Nano 10(3), 3042–3068 (2016)

DOI

15
Wu, J., Hu, R., Zeng, S., Xi, W., Huang, S., Deng, J., Tao, G.: Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation. ACS Appl. Mater. Interfaces 12(16), 19015–19022 (2020)

DOI

16
Ji, H., Liu, D., Cheng, H., Zhang, C., Yang, L., Ren, D.: Infrared thermochromic properties of monoclinic VO2 nanopowders using a malic acid-assisted hydrothermal method for adaptive camouflage. RSC Adv. 7(9), 5189–5194 (2017)

DOI

17
Kim, H., Seo, M., Kim, J., Kwon, D., Choi, S., Kim, J.W., Myoung, J.: Highly stretchable and wearable thermotherapy pad with micropatterned thermochromic display based on Ag nanowire–single-walled carbon nanotube composite. Adv. Funct. Mater. 29(24), 1901061 (2019)

DOI

18
Liu, R., He, L., Cao, M., Sun, Z., Zhu, R., Li, Y.: Flexible temperature sensors. Front. Chem. 9, 539678 (2021)

DOI

19
Lee, G., Bae, G.Y., Son, J.H., Lee, S., Kim, S.W., Kim, D., Lee, S.G., Cho, K.: User-interactive thermotherapeutic electronic skin based on stretchable thermochromic strain sensor. Adv. Sci. (Weinh) 7(17), 2001184 (2020)

DOI

20
Eslahi, N., Fatemi, T., Varsei, M., Bazgir, S.: Electrospinning of smart thermochromic nanofibers as sensors. Sci. Iran. 27(6), 6 (2020)

21
He, Y., Li, W., Han, N., Wang, J., Zhang, X.: Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor. Appl. Energy 247, 615–629 (2019)

DOI

22
Zou, X., Ji, H., Zhao, Y., Lu, M., Tao, J., Tang, P., Liu, B., Yu, X., Mao, Y.: Research progress of photo-/electro-driven thermochromic smart windows. Nanomaterials (Basel) 11(12), 3335 (2021)

DOI

23
Yan, W., Dong, C., Xiang, Y., Jiang, S., Leber, A., Loke, G., Xu, W., Hou, C., Zhou, S., Chen, M., Hu, R., Shum, P.P., Wei, L., Jia, X., Sorin, F., Tao, X., Tao, G.: Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater. Today 35, 168–194 (2020)

DOI

24
Barkaoui, S., Mankai, M., Miloud, N.B., Kraïem, M., Madureira, J., Verde, S.C., Boudhrioua, N.: E-beam irradiation of strawberries: investigation of microbiological, physicochemical, sensory acceptance properties and bioactive content. Innov. Food Sci. Emerg. 73, 102769 (2021)

DOI

25
Inami, T., Tanimoto, Y., Minami, N., Yamaguchi, M., Kasai, K.: Color stability of laboratory glass-fiber-reinforced plastics for esthetic orthodontic wires. Korean J. Orthod. 45(3), 130–135 (2015)

DOI

Outlines

/