REVIEW ARTICLE

Highly stable β-ketoenamine-based covalent organic frameworks (COFs): synthesis and optoelectrical applications

  • Yaqin Li 1,2 ,
  • Maosong Liu 1 ,
  • Jinjun Wu 2 ,
  • Junbo Li 1,2 ,
  • Xianglin Yu , 1 ,
  • Qichun Zhang , 3,4
Expand
  • 1. Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430074, China
  • 2. School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China
  • 3. Department of Materials Science and Engineering, City University of Hongkong, Hong Kong SAR 999077, China
  • 4. Center of Super-Diamond and Advanced Films (COSDAF), City University of Hongkong, Hong Kong SAR 999077, China

Received date: 15 Dec 2021

Accepted date: 09 Mar 2022

Published date: 15 Sep 2022

Copyright

2022 The Author(s) 2022

Abstract

Covalent organic frameworks (COFs) are one class of porous materials with permanent porosity and regular channels, and have a covalent bond structure. Due to their interesting characteristics, COFs have exhibited diverse potential applications in many fields. However, some applications require the frameworks to possess high structural stability, excellent crystallinity, and suitable pore size. COFs based on β-ketoenamine and imines are prepared through the irreversible enol-to-keto tautomerization. These materials have high crystallinity and exhibit high stability in boiling water, with strong resistance to acids and bases, resulting in various possible applications. In this review, we first summarize the preparation methods for COFs based on β-ketoenamine, in the form of powders, films and foams. Then, the effects of different synthetic methods on the crystallinity and pore structure of COFs based on β-ketoenamine are analyzed and compared. The relationship between structures and different applications including fluorescence sensors, energy storage, photocatalysis, electrocatalysis, batteries and proton conduction are carefully summarized. Finally, the potential applications, large-scale industrial preparation and challenges in the future are presented.

Cite this article

Yaqin Li , Maosong Liu , Jinjun Wu , Junbo Li , Xianglin Yu , Qichun Zhang . Highly stable β-ketoenamine-based covalent organic frameworks (COFs): synthesis and optoelectrical applications[J]. Frontiers of Optoelectronics, 2022 , 15(3) : 38 . DOI: 10.1007/s12200-022-00032-5

1
Liu, X., Huang, D., Lai, C., Zeng, G., Qin, L., Wang, H., Yi, H., Li, B., Liu, S., Zhang, M., Deng, R., Fu, Y., Li, L., Xue, W., Chen, S.: Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem. Soc. Rev. 48(20), 5266–5302 (2019)

DOI

2
Yusran, Y., Fang, Q., Qiu, S.L.: Postsynthetic covalent modification in covalent organic frameworks. Isr. J. Chem. 58(9–10), 971–984 (2018)

DOI

3
Gui, B., Lin, G., Ding, H., Gao, C., Mal, A., Wang, C.: Three-dimensional covalent organic frameworks: from topology design to applications. Acc. Chem. Res. 53(10), 2225–2234 (2020)

DOI

4
Alahakoon, S.B., Diwakara, S.D., Thompson, C.M., Smaldone, R.A.: Supramolecular design in 2D covalent organic frameworks. Chem. Soc. Rev. 49(5), 1344–1356 (2020)

DOI

5
Wang, X., She, P., Zhang, Q.: Recent advances on electrochemical methods in fabricating two-dimensional organic-ligand-containing frameworks. SmartMat 2(3), 299–325 (2021)

DOI

6
Xu, S., Zhang, Q.C.: Recent progress in covalent organic frameworks as light-emitting materials. Mater. Today. Energy 20, 100635 (2021)

DOI

7
Li, Y., Chen, W., Xing, G., Jiang, D., Chen, L.: New synthetic strategies toward covalent organic frameworks. Chem. Soc. Rev. 49(10), 2852–2868 (2020)

DOI

8
Wang, Z., Zhang, S., Chen, Y., Zhang, Z., Ma, S.: Covalent organic frameworks for separation applications. Chem. Soc. Rev. 49(3), 708–735 (2020)

DOI

9
Dautzenberg, E., Lam, M., Li, G., de Smet, L.C.P.M.: Enhanced surface area and reduced pore collapse of methylated, iminelinked covalent organic frameworks. Nanoscale 13(46), 19446–19452 (2021)

DOI

10
She, P., Qin, Y., Wang, X., Zhang, Q.: Recent progress in external-stimulus-responsive 2D covalent organic frameworks. Adv. Mater. 34(22), 2101175 (2021)

DOI

11
Yang, J., Kang, F., Wang, X., Zhang, Q.: Design strategies for improving the crystallinity of covalent organic frameworks and conjugated polymers: a review. Mater. Horiz. 9(1), 121–146 (2022)

DOI

12
Zhan, X.J., Chen, Z., Zhang, Q.C.: Recent progress in two-dimensional COFs for energy-related applications. J. Mater. Chem. A Mater. Energy Sustain. 5(28), 14463–14479 (2017)

DOI

13
Wu, C., Liu, Y., Liu, H., Duan, C., Pan, Q., Zhu, J., Hu, F., Ma, X., Jiu, T., Li, Z., Zhao, Y.: Highly conjugated three-dimensional covalent organic frameworks based on spirobifluorene for perovskite solar cell enhancement. J. Am. Chem. Soc. 140(31), 10016–10024 (2018)

DOI

14
Sun, T., Xie, J., Guo, W., Li, D.S., Zhang, Q.C.: Covalent–organic frameworks: advanced organic electrode materials for rechargeable batteries. Adv. Energy Mater. 10(19), 1904199 (2020)

DOI

15
Yao, C.J., Wu, Z., Xie, J., Yu, F., Guo, W., Xu, Z.J., Li, D.S., Zhang, S., Zhang, Q.: Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery. Chemsuschem 13(9), 2457–2463 (2020)

DOI

16
Bagheri, A.R., Aramesh, N., Haddad, P.R.: Applications of covalent organic frameworks and their composites in the extraction of pesticides from different samples. J. Chromatogr. A 1661, 462612 (2022)

DOI

17
Zhou, H.Y., Zhou, C.D., Tang, S.Y., Zhang, F.M., Lei, S., Li, Z.J., Liu, J.J., Chen, M.: High efficiency solution synthesis of aryl-aryl linked two-dimensional covalent organic frameworks with remarkable adsorption performance for polycyclic aromatic hydrocarbons (PAHs). Mater. Lett. 307, 131002 (2022)

DOI

18
He, M., Liang, Q.H., Tang, L., Liu, Z.F., Shao, B.B., He, Q.Y., Wu, T., Luo, S.H., Pan, Y., Zhao, C.H., Niu, C.G., Hu, Y.M.: Advances of covalent organic frameworks based on magnetism: classification, synthesis, properties, applications. Coord. Chem. Rev. 449, 214219 (2021)

DOI

19
Wang, H., Wang, M.K., Wang, Y.L., Wang, J., Men, X.H., Zhang, Z.Z., Singh, V.: Synergistic effects of COF and GO on high flux oil/water separation performance of superhydrophobic composites. Sep. Purif. Technol. 276, 119268 (2021)

DOI

20
Yu, F., Liu, W., Ke, S.W., Kurmoo, M., Zuo, J.L., Zhang, Q.: Electrochromic two-dimensional covalent organic framework with a reversible dark-to-transparent switch. Nat. Commun. 11(1), 5534 (2020)

DOI

21
Yu, F., Liu, W., Li, B., Tian, D., Zuo, J.L., Zhang, Q.: Photo-stimulus-responsive large-area two-dimensional covalent organic framework films. Angew. Chem. Int. Ed. 58(45), 16101–16104 (2019)

DOI

22
Xiang, Y., Yu, X.L., Li, Y.Q., Chen, J.Y., Wu, J.J., Wang, L.X., Chen, D.G., Li, J.B., Zhang, Q.C.: Covalent organic framework as an efficient fluorescence-enhanced probe to detect aluminum ion. Dyes Pigm. 195, 109710 (2021)

DOI

23
Yao, S., Liu, Z., Li, L.: Recent progress in nanoscale covalent organic frameworks for cancer diagnosis and therapy. Nano-Micro Letters 13(1), 176 (2021)

DOI

24
Ghahari, A., Raissi, H., Farzad, F.: Design of a new drug delivery platform based on surface functionalization 2D covalent organic frameworks. J. Taiwan Inst. Chem. Eng. 125, 15–22 (2021)

DOI

25
Gao, P., Shen, X., Liu, X., Chen, Y., Pan, W., Li, N., Tang, B.: Nucleic acid-gated covalent organic frameworks for cancer-specific imaging and drug release. Anal. Chem. 93(34), 11751–11757 (2021)

DOI

26
Zhi, Y., Wang, Z., Zhang, H.L., Zhang, Q.: Recent progress in metal-free covalent organic frameworks as heterogeneous catalysts. Small 16(24), e2001070 (2020)

DOI

27
Sun, Q.Z., Wu, C.Y., Pan, Q.Y., Zhang, B.J., Liu, Y.M., Lu, X.Y., Sun, J., Sun, L.S., Zhao, Y.J.: Three-dimensional covalent-organic frameworks loaded with highly dispersed ultrafine palladium nanoparticles as efficient heterogeneous catalyst. ChemNanoMat 7(1), 95–99 (2021)

DOI

28
Chen, Y., Li, W., Wang, X., Gao, R., Tang, A., Kong, D.: Green synthesis of covalent organic frameworks based on reaction media. Mater. Chem. Front. 5(3), 1253–1267 (2021)

DOI

29
Maia, R.A., Lopes Oliveira, F., Ritleng, V., Wang, Q., Louis, B., Mothé, E.P.: CO2 capture by hydroxylated azine-based covalent organic frameworks. Chemistry (Weinheim an der Bergstrasse, Germany) 27(30), 8048–8055 (2021)

DOI

30
Haase, F., Lotsch, B.V.: Solving the COF trilemma: towards crystalline, stable and functional covalent organic frameworks. Chem. Soc. Rev. 49(23), 8469–8500 (2020)

DOI

31
Fan, C., Wu, H., Guan, J., You, X., Yang, C., Wang, X., Cao, L., Shi, B., Peng, Q., Kong, Y., Wu, Y., Khan, N.A., Jiang, Z.: Scalable fabrication of crystalline COF membrane from amorphous polymeric membrane. Angew. Chem. Int. Ed. 60(33), 18051–18058 (2021)

DOI

32
Dawson, R., Cooper, A.I., Adams, D.J.: Nanoporous organic polymer networks. Prog. Polym. Sci. 37(4), 530–563 (2012)

DOI

33
Zhu, Y.L., Zhao, H.Y., Fu, C.L., Li, Z.W., Sun, Z.Y., Lu, Z.: Mechanisms of defect correction by reversible chemistries in covalent organic frameworks.. J. Phys. Chem. Lett. 11(22), 9952–9956 (2020)

DOI

34
Mao, C.F., Hu, Y.J., Yang, C.H., Qin, C.C., Dong, G.M., Zhou, Y.M., Zhang, Y.W.: Well-designed spherical covalent organic frameworks with an electron-deficient and conjugate system for efficient photocatalytic hydrogen evolution. ACS Appl. Energy Mater. 4(12), 14111–14120 (2021)

DOI

35
Hynek, J., Zelenka, J., Rathouský, J., Kubát, P., Ruml, T., Demel, J., Lang, K.: Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of bacteria. ACS Appl. Mater. Interfaces. 10(10), 8527–8535 (2018)

DOI

36
Meng, F., Bi, S., Sun, Z., Jiang, B., Wu, D., Chen, J.S., Zhang, F.: Synthesis of ionic vinylene-linked covalent organic frameworks through quaternization-activated knoevenagel condensation. Angew. Chem. Int. Ed. 60(24), 13614–13620 (2021)

DOI

37
Segura, J.L., Mancheño, M.J., Zamora, F.: Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem. Soc. Rev. 45(20), 5635–5671 (2016)

DOI

38
Cote, A.P., Benin, A.I., Ockwig, N.W., O’Keeffe, M., Matzger, A.J., Yaghi, O.M.: Porous, crystalline, covalent organic frameworks. Science 310(5751), 1166–1170 (2005)

DOI

39
Lanni, L.M., Tilford, R.W., Bharathy, M., Lavigne, J.J.: Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 133(35), 13975–13983 (2011)

DOI

40
Park, S., Liao, Z., Ibarlucea, B., Qi, H., Lin, H.H., Becker, D., Melidonie, J., Zhang, T., Sahabudeen, H., Baraban, L., Baek, C.K., Zheng, Z., Zschech, E., Fery, A., Heine, T., Kaiser, U., Cuniberti, G., Dong, R., Feng, X.: Two-dimensional boronate ester covalent organic framework thin films with large single crystalline domains for a neuromorphic memory device. Angew. Chem. Int. Ed. 59(21), 8218–8224 (2020)

DOI

41
Li, Y.J., Han, Y.N., Chen, M.H., Feng, Y.Q., Zhang, B.: Construction of a flexible covalent organic framework based on triazine units with interesting photoluminescent properties for sensitive and selective detection of picric acid. RSC Adv. 9(53), 30937–30942 (2019)

DOI

42
Li, X.L., Cai, S.L., Sun, B., Yang, C.Q., Zhang, J., Liu, Y.: Chemically robust covalent organic frameworks: progress and perspective. Matter 3(5), 1507–1540 (2020)

DOI

43
Lu, Y., Liang, Y., Zhao, Y., Xia, M., Liu, X., Shen, T., Feng, L., Yuan, N., Chen, Q.: Fluorescent test paper via the in situ growth of COFs for rapid and convenient detection of Pd(II) ions. ACS Appl. Mater. Interfaces. 13(1), 1644–1650 (2021)

DOI

44
Shan, M., Seoane, B., Rozhko, E., Dikhtiarenko, A., Clet, G., Kapteijn, F., Gascon, J.: Azine-linked covalent organic framework (COF)-based mixed-matrix membranes for CO2/CH4 separation. Chemistry (Weinheim an der Bergstrasse, Germany) 22(41), 14467–14470 (2016)

DOI

45
Luo, Z., Liu, L., Ning, J., Lei, K., Lu, Y., Li, F., Chen, J.: A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew. Chem. Int. Ed. 57(30), 9443–9446 (2018)

DOI

46
Xue, R., Gou, H., Zheng, Y.P., Zhang, L., Liu, Y.S., Rao, H.H., Zhao, G.H.: A new squaraine-linked triazinyl-based covalent organic frameworks: preparation, characterization and application for sensitive and selective determination of Fe3+ cations. ChemistrySelect 5(34), 10632–10636 (2020)

DOI

47
Wei, S., Zhang, F., Zhang, W., Qiang, P., Yu, K., Fu, X., Wu, D., Bi, S., Zhang, F.: Semiconducting 2D triazine-cored covalent organic frameworks with unsubstituted olefin linkages. J. Am. Chem. Soc. 141(36), 14272–14279 (2019)

DOI

48
Yuan, C., Fu, S., Yang, K., Hou, B., Liu, Y., Jiang, J., Cui, Y.: Crystalline C–C and C═C bond-linked chiral covalent organic frameworks. J. Am. Chem. Soc. 143(1), 369–381 (2021)

DOI

49
Cusin, L., Peng, H., Ciesielski, A., Samorì, P.: Chemical conversion and locking of the imine linkage: enhancing the functionality of covalent organic frameworks. Angew. Chem. Int. Ed. 60(26), 14236–14250 (2021)

DOI

50
Han, X., Huang, J., Yuan, C., Liu, Y., Cui, Y.: Chiral 3D covalent organic frameworks for high performance liquid chromatographic enantioseparation. J. Am. Chem. Soc. 140(3), 892–895 (2018)

DOI

51
Liu, H.Y., Chu, J., Yin, Z.L., Cai, X., Zhuang, L., Deng, H.X.: Covalent organic frameworks linked by amine bonding for concerted electrochemical reduction of CO2. Chem 4(7), 1696–1709 (2018)

DOI

52
Liang, Y., Xia, M., Zhao, Y., Wang, D., Li, Y., Sui, Z., Xiao, J., Chen, Q.: Functionalized triazine-based covalent organic frameworks containing quinoline via aza-Diels-Alder reaction for enhanced lithium-sulfur batteries performance. J. Colloid Interface Sci. 608(Pt 1), 652–661 (2022)

DOI

53
Rabbani, M.G., El-Kaderi, H.M.: Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake. Chem. Mater. 24(8), 1511–1517 (2012)

DOI

54
Rabbani, M.G., Islamoglu, T., El-Kaderi, H.M.: Benzothiazole-and benzoxazole-linked porous polymers for carbon dioxide storage and separation. J. Mater. Chem. A Mater. Energy Sustain. 5(1), 258–265 (2017)

DOI

55
Waller, P.J., AlFaraj, Y.S., Diercks, C.S., Jarenwattananon, N.N., Yaghi, O.M.: Conversion of imine to oxazole and thiazole linkages in covalent organic frameworks. J. Am. Chem. Soc. 140(29), 9099–9103 (2018)

DOI

56
Eder, G.M., Pyles, D.A., Wolfson, E.R., McGrier, P.L.: A ruthenium porphyrin-based porous organic polymer for the hydrosilylative reduction of CO2 to formate. Chem. Commun. 55(50), 7195–7198 (2019)

DOI

57
Machado, T.F., Serra, M.E.S., Murtinho, D., Valente, A.J.M., Naushad, M.: Covalent organic frameworks: synthesis, properties and applications-an overview. Polymers 13(6), 970 (2021)

DOI

58
Sharma, R.K., Yadav, P., Yadav, M., Gupta, R., Rana, P., Srivastava, A., Zboril, R., Varma, R.S., Antonietti, M., Gawande, M.B.: Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Mater. Horiz. 7(2), 411–454 (2020)

DOI

59
Tao, Y., Ji, W.Y., Ding, X.S., Han, B.H.: Exfoliated covalent organic framework nanosheets. J. Mater. Chem. A Mater. Energy Sustain. 9(12), 7336–7365 (2021)

DOI

60
Bai, B., Wang, D., Wan, L.J.: Synthesis of covalent organic framework films at interfaces. Bull. Chem. Soc. Jpn. 94(3), 1090–1098 (2021)

DOI

61
Mohammed, A.K., Shetty, D.: Macroscopic covalent organic framework architectures for water remediation. Environ. Sci.: Water Res. Technol. 7(11), 1895–1927 (2021)

DOI

62
Li, X., Zhang, C., Cai, S., Lei, X., Altoe, V., Hong, F., Urban, J.J., Ciston, J., Chan, E.M., Liu, Y.: Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks. Nat. Commun. 9(1), 2998 (2018)

DOI

63
Evans, A.M., Ryder, M.R., Ji, W., Strauss, M.J., Corcos, A.R., Vitaku, E., Flanders, N.C., Bisbey, R.P., Dichtel, W.R.: Trends in the thermal stability of two-dimensional covalent organic frameworks. Faraday Discuss. 225, 226–240 (2021)

DOI

64
Rao, M.R., Fang, Y., De Feyter, S., Perepichka, D.F.: Conjugated covalent organic frameworks via michael addition-elimination. J. Am. Chem. Soc. 139(6), 2421–2427 (2017)

DOI

65
Babu, H.V., Bai, M.G.M., Rajeswara, R.M.: Functional π-conjugated two-dimensional covalent organic frameworks. ACS Appl. Mater. Interfaces. 11(12), 11029–11060 (2019)

DOI

66
Esrafili, A., Wagner, A., Inamdar, S., Acharya, A.P.: Covalent organic frameworks for biomedical applications. Adv. Healthcare Mater. 10(6), e2002090 (2021)

DOI

67
Singh, V., Jang, S., Vishwakarma, N.K., Kim, D.: Intensified synthesis and post-synthetic modification of covalent organic frameworks using a continuous flow of microdroplets technique. NPG Asia Mater. 10(1), e456 (2018)

DOI

68
Wang, J.L., Zhuang, S.T.: Covalent organic frameworks (COFs) for environmental applications. Coord. Chem. Rev. 400, 213046 (2019)

DOI

69
Chong, J.H., Sauer, M., Patrick, B.O., MacLachlan, M.J.: Highly stable keto-enamine salicylideneanilines. Org. Lett. 5(21), 3823–3826 (2003)

DOI

70
Kandambeth, S., Mallick, A., Lukose, B., Mane, M.V., Heine, T., Banerjee, R.: Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134(48), 19524–19527 (2012)

DOI

71
Li, X., Yang, C., Sun, B., Cai, S., Chen, Z., Lv, Y., Zhang, J., Liu, Y.: Expeditious synthesis of covalent organic frameworks: a review. J. Mater. Chem. A Mater. Energy Sustain. 8(32), 16045–16060 (2020)

DOI

72
Ji, W., Hamachi, L.S., Natraj, A., Flanders, N.C., Li, R.L., Chen, L.X., Dichtel, W.R.: Solvothermal depolymerization and recrystallization of imine-linked two-dimensional covalent organic frameworks. Chem. Sci. (Cambridge) 12(48), 16014–16022 (2021)

DOI

73
Zou, L.F., Yang, X.Y., Yuan, S., Zhou, H.C.: Flexible monomerbased covalent organic frameworks: design, structure and functions. CrystEngComm 19(33), 4868–4871 (2017)

DOI

74
DeBlase, C.R., Silberstein, K.E., Truong, T.T., Abruña, H.D., Dichtel, W.R.: β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 135(45), 16821–16824 (2013)

DOI

75
Fang, Q., Gu, S., Zheng, J., Zhuang, Z., Qiu, S., Yan, Y.: 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. Angew. Chem. Int. Ed. 53(11), 2878–2882 (2014)

DOI

76
Wolfe, J.P., Åhman, J., Sadighi, J.P., Singer, R.A., Buchwald, S.L.: An ammonia equivalent for the palladium-catalyzed amination of aryl halides and triflates. Tetrahedron Lett. 38(36), 6367–6370 (1997)

DOI

77
Vitaku, E., Dichtel, W.R.: Synthesis of 2D imine-linked covalent organic frameworks through formal transimination reactions. J. Am. Chem. Soc. 139(37), 12911–12914 (2017)

DOI

78
Daugherty, M.C., Vitaku, E., Li, R.L., Evans, A.M., Chavez, A.D., Dichtel, W.R.: Improved synthesis of β-ketoenamine-linked covalent organic frameworks via monomer exchange reactions. Chem. Commun. 55(18), 2680–2683 (2019)

DOI

79
Wang, R., Kong, W., Zhou, T., Wang, C., Guo, J.: Organobase modulated synthesis of high-quality β-ketoenamine-linked covalent organic frameworks. Chem. Commun. 57(3), 331–334 (2021)

DOI

80
Zhao, C., Diercks, C.S., Zhu, C., Hanikel, N., Pei, X., Yaghi, O.M.: Urea-linked covalent organic frameworks. J. Am. Chem. Soc. 140(48), 16438–16441 (2018)

DOI

81
Biswal, B.P., Chandra, S., Kandambeth, S., Lukose, B., Heine, T., Banerjee, R.: Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 135(14), 5328–5331 (2013)

DOI

82
Chandra, S., Kandambeth, S., Biswal, B.P., Lukose, B., Kunjir, S.M., Chaudhary, M., Babarao, R., Heine, T., Banerjee, R.: Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 135(47), 17853–17861 (2013)

DOI

83
Liu, W., Cao, Y., Wang, W., Gong, D., Cao, T., Qian, J., Iqbal, K., Qin, W., Guo, H.: Mechanochromic luminescent covalent organic frameworks for highly selective hydroxyl radical detection. Chem. Commun. 55(2), 167–170 (2019)

DOI

84
Das, G., Balaji Shinde, D., Kandambeth, S., Biswal, B.P., Banerjee, R.: Mechanosynthesis of imine, β-ketoenamine, and hydrogen-bonded imine-linked covalent organic frameworks using liquid-assisted grinding. Chem. Commun. 50(84), 12615–12618 (2014)

DOI

85
Liu, S.S., Liu, Q.Q., Huang, S.Z., Zhang, C., Dong, X.Y., Zang, S.Q.: Sulfonic and phosphonic porous solids as proton conductor. Coord. Chem. Rev. 451, 214241 (2022)

DOI

86
Peng, Y., Xu, G., Hu, Z., Cheng, Y., Chi, C., Yuan, D., Cheng, H., Zhao, D.: Mechanoassisted synthesis of sulfonated covalent organic frameworks with high intrinsic proton conductivity. ACS Appl. Mater. Interfaces. 8(28), 18505–18512 (2016)

DOI

87
Shinde, D.B., Aiyappa, H.B., Bhadra, M., Biswal, B.P., Wadge, P., Kandambeth, S., Garai, B., Kundu, T., Kurungot, S., Banerjee, R.: A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte. J. Mater. Chem. A Mater. Energy Sustain. 4(7), 2682–2690 (2016)

DOI

88
Karak, S., Kandambeth, S., Biswal, B.P., Sasmal, H.S., Kumar, S., Pachfule, P., Banerjee, R.: Constructing ultraporous covalent organic frameworks in seconds via an organic terracotta process. J. Am. Chem. Soc. 139(5), 1856–1862 (2017)

DOI

89
Wei, H., Chai, S., Hu, N., Yang, Z., Wei, L., Wang, L.: The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity. Chem. Commun. 51(61), 12178–12181 (2015)

DOI

90
Xu, L., Xu, J., Shan, B.T., Wang, X.L., Gao, C.J.: TpPa-2-incorporated mixed matrix membranes for efficient water purification. J. Membr. Sci. 526, 355–366 (2017)

DOI

91
Dong, B., Wang, W.J., Pan, W., Kang, G.J.: Ionic liquid as a green solvent for ionothermal synthesis of 2D keto-enamine-linked covalent organic frameworks. Mater. Chem. Phys. 226, 244–249 (2019)

DOI

92
Qiu, J.K., Wang, H.Y., Zhao, Y.L., Guan, P.X., Li, Z.Y., Zhang, H.C., Gao, H.S., Zhang, S.J., Wang, J.J.: Hierarchically porous covalent organic frameworks assembled in ionic liquids for highly effective catalysis of C-C coupling reactions. Green Chem. 22(8), 2605–2612 (2020)

DOI

93
Zhao, L.M., Liu, H.M., Du, Y., Liang, X., Wang, W.J., Zhao, H., Li, W.Z.: An ionic liquid as a green solvent for high potency synthesis of 2D covalent organic frameworks. New J. Chem. 44(36), 15410–15414 (2020)

DOI

94
Thote, J., BarikeAiyappa, H., Rahul Kumar, R., Kandambeth, S., Biswal, B.P., Balaji Shinde, D., Chaki Roy, N., Banerjee, R.: Constructing covalent organic frameworks in water via dynamic covalent bonding. Int. Union Crystallogr. 3(Pt 6), 402–407 (2016)

DOI

95
Lu, J., Lin, F., Wen, Q., Qi, Q.Y., Xu, J.Q., Zhao, X.: Large-scale synthesis of azine-linked covalent organic frameworks in water and promoted by water. N. J. Chem. 43(16), 6116–6120 (2019)

DOI

96
DeBlase, C.R., Hernández-Burgos, K., Silberstein, K.E., Rodríguez-Calero, G.G., Bisbey, R.P., Abruña, H.D., Dichtel, W.R.: Rapid and efficient redox processes within 2D covalent organic framework thin films. ACS Nano 9(3), 3178–3183 (2015)

DOI

97
Wang, R., Wei, M.J., Wang, Y.: Secondary growth of covalent organic frameworks (COFs) on porous substrates for fast desalination. J. Membr. Sci. 604, 118090 (2020)

DOI

98
Liu, G.H., Jiang, Z.Y., Yang, H., Li, C.D., Wang, H.J., Wang, M.D., Song, Y.M., Wu, H., Pan, F.S.: High-efficiency water-selective membranes from the solution-diffusion synergy of calcium alginate layer and covalent organic framework (COF) layer. J. Membr. Sci. 572, 557–566 (2019)

DOI

99
Kandambeth, S., Biswal, B.P., Chaudhari, H.D., Rout, K.C., Kunjattu, H.S., Mitra, S., Karak, S., Das, A., Mukherjee, R., Kharul, U.K., Banerjee, R.: Selective molecular sieving in self-standing porous covalent-organic-framework membranes. Adv. Mater. 29(2), 1603945 (2017)

DOI

100
Dey, K., Bhunia, S., Sasmal, H.S., Reddy, C.M., Banerjee, R.: Self-assembly-driven nanomechanics in porous covalent organic framework thin films. J. Am. Chem. Soc. 143(2), 955–963 (2021)

DOI

101
Dey, K., Pal, M., Rout, K.C., Kunjattu, H.S., Das, A., Mukherjee, R., Kharul, U.K., Banerjee, R.: Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc. 139(37), 13083–13091 (2017)

DOI

102
Li, Y., Wu, Q., Guo, X., Zhang, M., Chen, B., Wei, G., Li, X., Li, X., Li, S., Ma, L.: Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nat. Commun. 11(1), 599 (2020)

DOI

103
Kang, Z.X., Peng, Y.W., Qian, Y.H., Yuan, D.Q., Addicoat, M.A., Heine, T., Hu, Z.G., Tee, Z., Guo, Z.G., Zhao, D.: Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mater. 28(5), 1277–1285 (2016)

DOI

104
Shen, R., Huang, L., Liu, R., Shuai, Q.: Determination of sulfonamides in meat by monolithic covalent organic frameworks based solid phase extraction coupled with high-performance liquid chromatography-mass spectrometric. J. Chromatogr. A 1655, 462518 (2021)

DOI

105
Karak, S., Dey, K., Torris, A., Halder, A., Bera, S., Kanheerampockil, F., Banerjee, R.: Inducing disorder in order: hierar-chically porous covalent organic framework nanostructures for rapid removal of persistent organic pollutants. J. Am. Chem. Soc. 141(18), 7572–7581 (2019)

DOI

106
Liu, R., Yan, Q., Tang, Y., Liu, R., Huang, L., Shuai, Q.: NaCl template-assisted synthesis of self-floating COFs foams for the efficient removal of sulfamerazine. J. Hazard. Mater. 421, 126702 (2022)

DOI

107
Zhang, S., Wu, X., Ma, C., Li, Y., You, J.: Cationic surfactant modified 3D COF and its application in the adsorption of UV filters and alkylphenols from food packaging material migrants. J. Agric. Food Chem. 68(11), 3663–3669 (2020)

DOI

108
Cui, W.R., Zhang, C.R., Jiang, W., Liang, R.P., Qiu, J.D.: Covalent organic framework nanosheets for fluorescence sensing via metal coordination. ACS Appl. Nano Mater. 2(8), 5342–5349 (2019)

DOI

109
Cui, W.R., Zhang, C.R., Jing, W., Liang, R.P., Wen, S.H., Peng, D., Qiu, J.D.: Covalent organic framework nanosheet-based ultrasensitive and selective colorimetric sensor for trace Hg2+ detection. ACS Sustain. Chem. Eng. 7(10), 9408–9415 (2019)

DOI

110
Manna, A., Maharana, A.K., Rambabu, G., Nayak, S., Basu, S., Das, S.: Dithia-crown-ether integrated self-exfoliated polymeric covalent organic nanosheets for selective sensing and removal of mercury. ACS Appl. Polym. Mater. 3(11), 5527–5535 (2021)

DOI

111
Kaleeswaran, D., Vishnoi, P., Murugavel, R.: [3+3] Imine and β-ketoenamine-tethered fluorescent covalent-organic frameworks for CO2 uptake and nitroaromatic sensing. J. Mater. Chem. C Mater. Opt. Electron. Devices 3(27), 7159–7171 (2015)

DOI

112
Mal, A., Mishra, R.K., Praveen, V.K., Khayum, M.A., Banerjee, R., Ajayaghosh, A.: Supramolecular reassembly of self-exfoliated ionic covalent organic nanosheets for label-free detection of double-stranded DNA. Angew. Chem. Int. Ed. 57(28), 8443–8447 (2018)

DOI

113
Wang, P., Zhou, F., Zhang, C., Yin, S.Y., Teng, L., Chen, L., Hu, X.X., Liu, H.W., Yin, X., Zhang, X.B.: Ultrathin two-dimensional covalent organic framework nanoprobe for interference-resistant two-photon fluorescence bioimaging. Chem. Sci. (Cambridge) 9(44), 8402–8408 (2018)

DOI

114
Wang, J.M., Lian, X., Yan, B.: Eu3+-functionalized covalent organic framework hybrid material as a sensitive turn-on fluorescent switch for levofloxacin monitoring in serum and urine. Inorg. Chem. 58(15), 9956–9963 (2019)

DOI

115
Wang, J., Yan, B.: Improving covalent organic frameworks fluorescence by triethylamine pinpoint surgery as selective biomarker sensor for diabetes mellitus diagnosis. Anal. Chem. 91(20), 13183–13190 (2019)

DOI

116
Zhang, Y., Shen, X., Feng, X., Xia, H., Mu, Y., Liu, X.: Covalent organic frameworks as pH responsive signaling scaffolds. Chem. Commun. (Cambridge) 52(74), 11088–11091 (2016)

DOI

117
Yin, H.Q., Yin, F., Yin, X.B.: Strong dual emission in covalent organic frameworks induced by ESIPT. Chem. Sci. (Cambridge) 10(48), 11103–11109 (2019)

DOI

118
Mulzer, C.R., Shen, L., Bisbey, R.P., McKone, J.R., Zhang, N., Abruña, H.D., Dichtel, W.R.: Superior charge storage and power density of a conducting polymer-modified covalent organic framework. ACS Cent. Sci. 2(9), 667–673 (2016)

DOI

119
Wu, Y., Yan, D., Zhang, Z., Matsushita, M.M., Awaga, K.: Electron highways into nanochannels of covalent organic frameworks for high electrical conductivity and energy storage. ACS Appl. Mater. Interfaces. 11(8), 7661–7665 (2019)

DOI

120
Xu, Y., Lin, Z., Huang, X., Wang, Y., Huang, Y., Duan, X.: Functionalized graphene hydrogel-based high-performance supercapacitors. Adv. Mater. 25(40), 5779–5784 (2013)

DOI

121
Chandra, S., Chowdhury, D.R., Addicoat, M., Heine, T., Paul, A., Banerjee, R.: Molecular level control of the capacitance of two-dimensional covalent organic frameworks: role of hydrogen bonding in energy storage materials. Chem. Mater. 29(5), 2074–2080 (2017)

DOI

122
Halder, A., Ghosh, M., Khayum, M.A., Bera, S., Addicoat, M., Sasmal, H.S., Karak, S., Kurungot, S., Banerjee, R.: Interlayer hydrogen-bonded covalent organic frameworks as high-performance supercapacitors. J. Am. Chem. Soc. 140(35), 10941–10945 (2018)

DOI

123
He, Y., Chen, W., Li, X., Zhang, Z., Fu, J., Zhao, C., Xie, E.: Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7(1), 174–182 (2013)

DOI

124
Niu, W., Liu, J., Mai, Y., Müllen, K., Feng, X.: Synthetic engineering of graphene nanoribbons with excellent liquid-phase processability. Trends Chem. 1(6), 549–558 (2019)

DOI

125
Niu, W., Ma, J., Soltani, P., Zheng, W., Liu, F., Popov, A.A., Weigand, J.J., Komber, H., Poliani, E., Casiraghi, C., Droste, J., Hansen, M.R., Osella, S., Beljonne, D., Bonn, M., Wang, H.I., Feng, X., Liu, J., Mai, Y.: A curved graphene nanoribbon with multi-edge structure and high intrinsic charge carrier mobility. J. Am. Chem. Soc. 142(43), 18293–18298 (2020)

DOI

126
Khayum, M.A., Vijayakumar, V., Karak, S., Kandambeth, S., Bhadra, M., Suresh, K., Acharambath, N., Kurungot, S., Banerjee, R.: Convergent covalent organic framework thin sheets as flexible supercapacitor electrodes. ACS Appl. Mater. Interfaces. 10(33), 28139–28146 (2018)

DOI

127
Sharma, R.K., Yadav, P., Yadav, M., Gupta, R., Rana, P., Srivastava, A., Zbořil, R., Varma, R.S., Antonietti, M., Gawande, M.B.: Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Mater. Horiz. 7(2), 411–454 (2020)

DOI

128
Pachfule, P., Acharjya, A., Roeser, J., Langenhahn, T., Schwarze, M., Schomäcker, R., Thomas, A., Schmidt, J.: Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J. Am. Chem. Soc. 140(4), 1423–1427 (2018)

DOI

129
Sheng, J.L., Dong, H., Meng, X.B., Tang, H.L., Yao, Y.H., Liu, D.Q., Bai, L.L., Zhang, F.M., Wei, J.Z., Sun, X.J.: Effect of different functional groups on photocatalytic hydrogen evolution in covalent-organic frameworks. ChemCatChem 11(9), 2313–2319 (2019)

DOI

130
Wang, X., Chen, L., Chong, S.Y., Little, M.A., Wu, Y., Zhu, W.H., Clowes, R., Yan, Y., Zwijnenburg, M.A., Sprick, R.S., Cooper, A.I.: Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 10(12), 1180–1189 (2018)

DOI

131
Thote, J., Aiyappa, H.B., Deshpande, A., Díaz Díaz, D., Kurungot, S., Banerjee, R.: A covalent organic framework-cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production. Chemistry (Weinheim an der Bergstrasse, Germany) 20(48), 15961–15965 (2014)

DOI

132
Zhang, F.M., Sheng, J.L., Yang, Z.D., Sun, X.J., Tang, H.L., Lu, M., Dong, H., Shen, F.C., Liu, J., Lan, Y.Q.: Rational design MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew. Chem. Commun. 57(37), 12106–12110 (2018)

DOI

133
Luo, M.L., Yang, Q., Liu, K.W., Cao, H.M., Yan, H.J.: Boosting photocatalytic H2 evolution on g-C3N4 via covalent organic frameworks (COFs) modifying. Chem. Commun. 55(41), 5829–5832 (2019)

DOI

134
Ming, J., Liu, A., Zhao, J., Zhang, P., Huang, H., Lin, H., Xu, Z., Zhang, X., Wang, X., Hofkens, J., Roeffaers, M.B.J., Long, J.: Hot π-electron tunneling of metal insulator-COF nanostructures for efficient hydrogen production. Angew. Chem. Commun. 58(50), 18290–18294 (2019)

DOI

135
Zhong, W., Sa, R., Li, L., He, Y., Li, L., Bi, J., Zhuang, Z., Yu, Y., Zou, Z.: A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 141(18), 7615–7621 (2019)

DOI

136
Liu, Z.L., Huang, Y.Q., Chang, S.Q., Zhu, X.L., Fu, Y.H., Ma, R., Lu, X.Q., Zhang, F.M., Zhu, W.D., Fan, M.H.: Highly dispersed Ru nanoparticles on a bipyridinelinked covalent organic framework for efficient photocatalytic CO2 reduction. Sustain. Energy Fuels 5(11), 2871–2876 (2021)

DOI

137
Guo, K., Zhu, X.L., Peng, L.L., Fu, Y.H., Ma, R., Lu, X.Q., Zhang, F.M., Zhu, W.D., Fan, M.H.: Boosting photocatalytic CO2 reduction over a covalent organic framework decorated with ruthenium nanoparticles. Chem. Eng. J. 405, 1270–1278 (2021)

DOI

138
Lv, H., Zhao, X., Niu, H., He, S., Tang, Z., Wu, F., Giesy, J.P.: Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants. J. Hazard. Mater. 369, 494–502 (2019)

DOI

139
Cao, Y., Liu, W., Qian, J., Cao, T., Wang, J., Qin, W.: Porous organic polymers containing sulfur skeleton for visible light degradation of organic dyes. Chem. Asian J. 14(16), 2883–2888 (2019)

DOI

140
Patra, B.C., Khilari, S., Manna, R.N., Mondal, S., Pradhan, D., Pradhan, A., Bhaumik, A.: A metal-free covalent organic polymer for electrocatalytic hydrogen evolution. ACS Catal. 7(9), 6120–6127 (2017)

DOI

141
Zhao, X., Pachfule, P., Thomas, A.: Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 50(12), 6871–6913 (2021)

DOI

142
Aiyappa, H.B., Thote, J., Shinde, D.B., Banerjee, R., Kurungot, S.: Cobalt-modified covalent organic framework as a robust water oxidation electrocatalyst. Chem. Mater. 28(12), 4375–4379 (2016)

DOI

143
Gao, Z., Yu, Z.W., Huang, Y.X., He, X.Q., Su, X.M., Xiao, L.H., Yu, Y., Huang, X.H., Luo, F.: Flexible and robust bimetallic covalent organic frameworks for the reversible switching of electrocatalytic oxygen evolution activity. J. Mater. Chem. A Mater. Energy Sustain. 8(12), 5907–5912 (2020)

DOI

144
Zhao, X., Pachfule, P., Li, S., Langenhahn, T., Ye, M., Schlesiger, C., Praetz, S., Schmidt, J., Thomas, A.: Macro/microporous covalent organic frameworks for efficient electrocatalysis. J. Am. Chem. Soc. 141(16), 6623–6630 (2019)

DOI

145
Zhao, X., Pachfule, P., Li, S., Langenhahn, T., Ye, M., Tian, G., Schmidt, J., Thomas, A.: Silica-templated covalent organic framework-derived Fe-N-doped mesoporous carbon as oxygen reduction electrocatalyst. Chem. Mater. 31(9), 3274–3280 (2019)

DOI

146
Gu, S., Wu, S., Cao, L., Li, M., Qin, N., Zhu, J., Wang, Z., Li, Y., Li, Z., Chen, J., Lu, Z.: Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries. J. Am. Chem. Soc. 141(24), 9623–9628 (2019)

DOI

147
Chandra, S., Kundu, T., Kandambeth, S., Babarao, R., Marathe, Y., Kunjir, S.M., Banerjee, R.: Phosphoric acid loaded azo (–N═N–) based covalent organic framework for proton conduction. J. Am. Chem. Soc. 136(18), 6570–6573 (2014)

DOI

148
Chandra, S., Kundu, T., Dey, K., Addicoat, M., Heine, T., Banerjee, R.: Interplaying intrinsic and extrinsic proton conductivities in covalent organic frameworks. Chem. Mater. 28(5), 1489–1494 (2016)

DOI

Outlines

/