RESEARCH ARTICLE

N-doped carbon anchored CoS2/MoS2 nanosheets as efficient electrocatalysts for overall water splitting

  • Xingwei Zhou 1 ,
  • Wei Zhang , 1,2 ,
  • Zunhao Zhang 1 ,
  • Zizhun Wang 1 ,
  • Xu Zou , 1 ,
  • Dabing Li 3 ,
  • Weitao Zheng 1
Expand
  • 1. Key Laboratory of Automobile Materials MOE, School of Materials Science and Engineering, Electron Microscopy Center, and International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China
  • 2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 3. State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

Received date: 12 Apr 2022

Accepted date: 09 May 2022

Published date: 15 Sep 2022

Copyright

2022 The Author(s) 2022

Abstract

The oriented two-dimensional porous nitrogen-doped carbon embedded with CoS2 and MoS2 nanosheets is a highly efficient bifunctional electrocatalyst. The hierarchical structure ensures fast mass transfer capacity in improving the electrocatalytic activity. And the greatly increased specific surface area is beneficial to expose more electrocatalytically active atoms. For oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) tests in 1 mol/L KOH solution, only 194 and 140 mV overpotential are required to achieve a current density of 10 mA/cm2, respectively. Our research provides an effective strategy for synergizing the individual components in nanostructures for a wide range of electrocatalytic reactions.

Cite this article

Xingwei Zhou , Wei Zhang , Zunhao Zhang , Zizhun Wang , Xu Zou , Dabing Li , Weitao Zheng . N-doped carbon anchored CoS2/MoS2 nanosheets as efficient electrocatalysts for overall water splitting[J]. Frontiers of Optoelectronics, 2022 , 15(3) : 30 . DOI: 10.1007/s12200-022-00034-3

1
Chu, K., Liu, Y.P., Li, Y.B., Guo, Y.L., Tian, Y.: Two-dimensional (2D)/2D interface engineering of a MoS2/ C3N4 heterostructure for promoted electrocatalytic nitrogen fixation. ACS Appl. Mater. Interfaces 12(6), 7081–7090 (2020)

DOI

2
Luo, Y., Li, X., Cai, X., Zou, X., Kang, F., Cheng, H.M., Liu, B.: Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano 12(5), 4565–4573 (2018)

DOI

3
Yang, X., Sun, H., Zan, P., Zhao, L., Lian, J.: Growth of vertically aligned Co3S4/CoMo2S4 ultrathin nanosheets on reduced graphene oxide as a high-performance supercapacitor electrode. J. Mater. Chem. A Mater. Energy Sustain. 4(48), 18857–18867 (2016)

DOI

4
Gao, Y., Xiong, T., Li, Y., Huang, Y., Li, Y., Balogun, M.J.T.: A simple and scalable approach to remarkably boost the overall water splitting activity of stainless steel electrocatalysts. ACS Omega 4(14), 16130–16138 (2019)

DOI

5
Zhao, G., Li, P., Cheng, N., Dou, S.X., Sun, W.: An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: breaking the scaling relation, stabilizing iridium (V), and beyond. Adv. Mater. 32(24), e2000872 (2020)

DOI

6
Xiong, T., Yao, X., Zhu, Z., Xiao, R., Hu, Y.W., Huang, Y., Zhang, S., Balogun, M.J.T.: In situ grown Co-based interstitial compounds: non-3D metal and non-metal dual modulation boosts alkaline and acidic hydrogen electrocatalysis. Small 18(9), e2105331 (2022)

DOI

7
Yang, F., Xiong, T., Huang, P., Zhou, S., Tan, Q., Yang, H., Huang, Y., Balogun, M.S.: Nanostructured transition metal compounds coated 3D porous core-shell carbon fiber as monolith water splitting electrocatalysts: a general strategy. Chem. Eng. J. 423, 130279 (2021)

DOI

8
Wang, Y., Chen, D., Zhang, J., Balogun, M.S., Wang, P., Tong, Y., Huang, Y.: Charge relays via dual carbon-actions on nanostructured BiVO4 for high performance photoelectrochemical water splitting. Adv. Funct. Mater. 32, 2112738 (2022)

DOI

9
Lim, K.J.H., Yilmaz, G., Lim, Y.F., Ho, G.W.: Multi-compositional hierarchical nanostructured Ni3S2@ MoSx/NiO electrodes for enhanced electrocatalytic hydrogen generation and energy storage. J. Mater. Chem. A Mater. Energy Sustain. 6(41), 20491–20499 (2018)

DOI

10
Zhang, C., Shi, Y., Yu, Y., Du, Y., Zhang, B.: Engineering sulfur defects, atomic thickness, and porous structures into cobalt sulfide nanosheets for efficient electrocatalytic alkaline hydrogen evolution. ACS Catal. 8(9), 8077–8083 (2018)

DOI

11
Wang, X., Zhang, Y., Si, H., Zhang, Q., Wu, J., Gao, L., Wei, X., Sun, Y., Liao, Q., Zhang, Z., Ammarah, K., Gu, L., Kang, Z., Zhang, Y.: Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 142(9), 4298–4308 (2020)

DOI

12
Ouyang, T., Wang, X.T., Mai, X.Q., Chen, A.N., Tang, Z.Y., Liu, Z.Q.: Coupling magnetic single-crystal Co2Mo3O8 with ultrathin nitrogen-rich carbon layer for oxygen evolution reaction. Angew. Chem. Int. Ed. Engl. 59(29), 11948–11957 (2020)

DOI

13
Zhu, L., Ji, J., Liu, J., Mine, S., Matsuoka, M., Zhang, J., Xing, M.: Designing 3D-MoS2 sponge as excellent cocatalysts in advanced oxidation processes for pollutant control. Angew. Chem. Int. Ed. Engl. 59(33), 13968–13976 (2020)

DOI

14
Chen, W., Gu, J., Du, Y., Song, F., Bu, F., Li, J., Yuan, Y., Luo, R., Liu, Q., Zhang, D.: Achieving rich and active alkaline hydrogen evolution heterostructures via interface engineering on 2D 1T-MoS2 quantum sheets. Adv. Funct. Mater. 30(25), 2000551 (2020)

DOI

15
Rui, B., Li, J., Chang, L., Wang, H., Lin, L., Guo, Y., Nie, P.: Engineering MoS2 nanosheets anchored on metal organic frameworks derived carbon polyhedra for superior lithium and potassium storage. Front. Energy Res. 7, 142 (2019)

DOI

16
Li, Y., Wang, Z., Hu, J., Li, S., Du, Y., Han, X., Xu, P.: Metal–organic frameworks derived interconnected bimetallic metaphosphate nanoarrays for efficient electrocatalytic oxygen evolution. Adv. Funct. Mater. 30(25), 1910498 (2020)

DOI

17
Zhong, H., Luo, Y., He, S., Tang, P., Li, D., Alonso-Vante, N., Feng, Y.: Electrocatalytic cobalt nanoparticles interacting with nitrogen-doped carbon nanotube in situ generated from a metal-organic framework for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 9(3), 2541–2549 (2017)

DOI

18
Hu, L., Hu, Y., Liu, R., Mao, Y., Balogun, M.S., Tong, Y.: Co-based MOF-derived Co/CoN/Co2P ternary composite embedded in N-and P-doped carbon as bifunctional nanocatalysts for efficient overall water splitting. Int. J. Hydrogen Energy 44(23), 11402–11410 (2019)

DOI

19
Yilmaz, G., Yang, T., Du, Y., Yu, X., Feng, Y.P., Shen, L., Ho, G.W.: Stimulated electrocatalytic hydrogen evolution activity of MOF-derived MoS2 basal domains via charge injection through surface functionalization and heteroatom doping. Adv. Sci. (Weinh.) 6(15), 1900140 (2019)

DOI

20
Zhou, J., Dou, Y., Zhou, A., Guo, R.M., Zhao, M.J., Li, J.R.: MOF template-directed fabrication of hierarchically structured electrocatalysts for efficient oxygen evolution reaction. Adv. Energy Mater. 7(12), 1602643 (2017)

DOI

21
Chen, Z., Ha, Y., Jia, H., Yan, X., Chen, M., Liu, M., Wu, R.: Oriented transformation of Co-LDH into 2D/3D ZIF-67 to achieve Co–N–C hybrids for efficient overall water splitting. Adv. Energy Mater. 9(19), 1803918 (2019)

DOI

22
Guo, Y., Tang, J., Henzie, J., Jiang, B., Xia, W., Chen, T., Bando, Y., Kang, Y.M., Hossain, M.S.A., Sugahara, Y., Yamauchi, Y.: Mesoporous iron-doped MoS2/ CoMo2S4 heterostructures through organic-metal cooperative interactions on spherical micelles for electrochemical water splitting. ACS Nano 14(4), 4141–4152 (2020)

DOI

23
Yan, Y., Han, Y., Wang, F., Hu, Y., Shi, Q., Diao, G., Chen, M.: Bifunctional electrocatalyst of CoxFey-C for overall water splitting. J. Alloys Compd. 897, 163126 (2022)

DOI

24
Wei, G., Xu, Z., Zhao, X., Wang, S., Kong, F., An, C.: N-doped CoSe2 nanomeshes as highly-efficient bifunctional electrocatalysts for water splitting. J. Alloys Compd. 893, 162328 (2022)

DOI

25
Zhao, D., Dai, M., Liu, H., Duan, Z., Tan, X., Wu, X.: Bifunctional ZnCo2S4@ CoZn13 hybrid electrocatalysts for high efficient overall water splitting. J. Energy Chem. 69, 292–300 (2022)

DOI

26
Zhu, S., Lei, J., Wu, S., Liu, L., Chen, T., Yuan, Y., Ding, C.: Construction of Fe-Co-Ni-Sx/NF nanomaterial as bifunctional electrocatalysts for water splitting. Mater. Lett. 311, 131549 (2022)

DOI

27
Guo, L., Liu, Q., Liu, Y., Chen, Z., Jiang, Y., Jin, H., Zhou, T., Yang, J., Liu, Y.: Self-supported tremella-like MoS2-AB particles on nickel foam as bifunctional electrocatalysts for overall water splitting. Nano Energy 92, 106707 (2022)

DOI

28
Yu, J., Li, W.J., Kao, G., Xu, C.Y., Chen, R., Liu, Q., Liu, J., Zhang, H., Wang, J.: In-situ growth of CNTs encapsulating P-doped NiSe2 nanoparticles on carbon framework as efficient bifunctional electrocatalyst for overall water splitting. J. Energy Chem 60, 111–120 (2021)

DOI

29
Singh, V.K., Nakate, U.T., Bhuyan, P., Chen, J., Tran, D.T., Park, S.: Mo/Co doped 1T-VS2 nanostructures as a superior bifunctional electrocatalyst for overall water splitting in alkaline media. J. Mater. Chem. A Mater. Energy Sustain. 10(16), 9067–9079 (2022)

DOI

Outlines

/