N-doped carbon anchored CoS2/MoS2 nanosheets as efficient electrocatalysts for overall water splitting

Xingwei Zhou, Wei Zhang, Zunhao Zhang, Zizhun Wang, Xu Zou, Dabing Li, Weitao Zheng

PDF(2550 KB)
PDF(2550 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (3) : 30. DOI: 10.1007/s12200-022-00034-3
RESEARCH ARTICLE
RESEARCH ARTICLE

N-doped carbon anchored CoS2/MoS2 nanosheets as efficient electrocatalysts for overall water splitting

Author information +
History +

Abstract

The oriented two-dimensional porous nitrogen-doped carbon embedded with CoS2 and MoS2 nanosheets is a highly efficient bifunctional electrocatalyst. The hierarchical structure ensures fast mass transfer capacity in improving the electrocatalytic activity. And the greatly increased specific surface area is beneficial to expose more electrocatalytically active atoms. For oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) tests in 1 mol/L KOH solution, only 194 and 140 mV overpotential are required to achieve a current density of 10 mA/cm2, respectively. Our research provides an effective strategy for synergizing the individual components in nanostructures for a wide range of electrocatalytic reactions.

Graphical abstract

Keywords

Oxygen evolution reaction / Hydrogen evolution reaction / Bifunctional electrocatalyst / Overall water splitting

Cite this article

Download citation ▾
Xingwei Zhou, Wei Zhang, Zunhao Zhang, Zizhun Wang, Xu Zou, Dabing Li, Weitao Zheng. N-doped carbon anchored CoS2/MoS2 nanosheets as efficient electrocatalysts for overall water splitting. Front. Optoelectron., 2022, 15(3): 30 https://doi.org/10.1007/s12200-022-00034-3

References

[1]
Chu, K., Liu, Y.P., Li, Y.B., Guo, Y.L., Tian, Y.: Two-dimensional (2D)/2D interface engineering of a MoS2/ C3N4 heterostructure for promoted electrocatalytic nitrogen fixation. ACS Appl. Mater. Interfaces 12(6), 7081–7090 (2020)
CrossRef Google scholar
[2]
Luo, Y., Li, X., Cai, X., Zou, X., Kang, F., Cheng, H.M., Liu, B.: Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano 12(5), 4565–4573 (2018)
CrossRef Google scholar
[3]
Yang, X., Sun, H., Zan, P., Zhao, L., Lian, J.: Growth of vertically aligned Co3S4/CoMo2S4 ultrathin nanosheets on reduced graphene oxide as a high-performance supercapacitor electrode. J. Mater. Chem. A Mater. Energy Sustain. 4(48), 18857–18867 (2016)
CrossRef Google scholar
[4]
Gao, Y., Xiong, T., Li, Y., Huang, Y., Li, Y., Balogun, M.J.T.: A simple and scalable approach to remarkably boost the overall water splitting activity of stainless steel electrocatalysts. ACS Omega 4(14), 16130–16138 (2019)
CrossRef Google scholar
[5]
Zhao, G., Li, P., Cheng, N., Dou, S.X., Sun, W.: An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: breaking the scaling relation, stabilizing iridium (V), and beyond. Adv. Mater. 32(24), e2000872 (2020)
CrossRef Google scholar
[6]
Xiong, T., Yao, X., Zhu, Z., Xiao, R., Hu, Y.W., Huang, Y., Zhang, S., Balogun, M.J.T.: In situ grown Co-based interstitial compounds: non-3D metal and non-metal dual modulation boosts alkaline and acidic hydrogen electrocatalysis. Small 18(9), e2105331 (2022)
CrossRef Google scholar
[7]
Yang, F., Xiong, T., Huang, P., Zhou, S., Tan, Q., Yang, H., Huang, Y., Balogun, M.S.: Nanostructured transition metal compounds coated 3D porous core-shell carbon fiber as monolith water splitting electrocatalysts: a general strategy. Chem. Eng. J. 423, 130279 (2021)
CrossRef Google scholar
[8]
Wang, Y., Chen, D., Zhang, J., Balogun, M.S., Wang, P., Tong, Y., Huang, Y.: Charge relays via dual carbon-actions on nanostructured BiVO4 for high performance photoelectrochemical water splitting. Adv. Funct. Mater. 32, 2112738 (2022)
CrossRef Google scholar
[9]
Lim, K.J.H., Yilmaz, G., Lim, Y.F., Ho, G.W.: Multi-compositional hierarchical nanostructured Ni3S2@ MoSx/NiO electrodes for enhanced electrocatalytic hydrogen generation and energy storage. J. Mater. Chem. A Mater. Energy Sustain. 6(41), 20491–20499 (2018)
CrossRef Google scholar
[10]
Zhang, C., Shi, Y., Yu, Y., Du, Y., Zhang, B.: Engineering sulfur defects, atomic thickness, and porous structures into cobalt sulfide nanosheets for efficient electrocatalytic alkaline hydrogen evolution. ACS Catal. 8(9), 8077–8083 (2018)
CrossRef Google scholar
[11]
Wang, X., Zhang, Y., Si, H., Zhang, Q., Wu, J., Gao, L., Wei, X., Sun, Y., Liao, Q., Zhang, Z., Ammarah, K., Gu, L., Kang, Z., Zhang, Y.: Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 142(9), 4298–4308 (2020)
CrossRef Google scholar
[12]
Ouyang, T., Wang, X.T., Mai, X.Q., Chen, A.N., Tang, Z.Y., Liu, Z.Q.: Coupling magnetic single-crystal Co2Mo3O8 with ultrathin nitrogen-rich carbon layer for oxygen evolution reaction. Angew. Chem. Int. Ed. Engl. 59(29), 11948–11957 (2020)
CrossRef Google scholar
[13]
Zhu, L., Ji, J., Liu, J., Mine, S., Matsuoka, M., Zhang, J., Xing, M.: Designing 3D-MoS2 sponge as excellent cocatalysts in advanced oxidation processes for pollutant control. Angew. Chem. Int. Ed. Engl. 59(33), 13968–13976 (2020)
CrossRef Google scholar
[14]
Chen, W., Gu, J., Du, Y., Song, F., Bu, F., Li, J., Yuan, Y., Luo, R., Liu, Q., Zhang, D.: Achieving rich and active alkaline hydrogen evolution heterostructures via interface engineering on 2D 1T-MoS2 quantum sheets. Adv. Funct. Mater. 30(25), 2000551 (2020)
CrossRef Google scholar
[15]
Rui, B., Li, J., Chang, L., Wang, H., Lin, L., Guo, Y., Nie, P.: Engineering MoS2 nanosheets anchored on metal organic frameworks derived carbon polyhedra for superior lithium and potassium storage. Front. Energy Res. 7, 142 (2019)
CrossRef Google scholar
[16]
Li, Y., Wang, Z., Hu, J., Li, S., Du, Y., Han, X., Xu, P.: Metal–organic frameworks derived interconnected bimetallic metaphosphate nanoarrays for efficient electrocatalytic oxygen evolution. Adv. Funct. Mater. 30(25), 1910498 (2020)
CrossRef Google scholar
[17]
Zhong, H., Luo, Y., He, S., Tang, P., Li, D., Alonso-Vante, N., Feng, Y.: Electrocatalytic cobalt nanoparticles interacting with nitrogen-doped carbon nanotube in situ generated from a metal-organic framework for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 9(3), 2541–2549 (2017)
CrossRef Google scholar
[18]
Hu, L., Hu, Y., Liu, R., Mao, Y., Balogun, M.S., Tong, Y.: Co-based MOF-derived Co/CoN/Co2P ternary composite embedded in N-and P-doped carbon as bifunctional nanocatalysts for efficient overall water splitting. Int. J. Hydrogen Energy 44(23), 11402–11410 (2019)
CrossRef Google scholar
[19]
Yilmaz, G., Yang, T., Du, Y., Yu, X., Feng, Y.P., Shen, L., Ho, G.W.: Stimulated electrocatalytic hydrogen evolution activity of MOF-derived MoS2 basal domains via charge injection through surface functionalization and heteroatom doping. Adv. Sci. (Weinh.) 6(15), 1900140 (2019)
CrossRef Google scholar
[20]
Zhou, J., Dou, Y., Zhou, A., Guo, R.M., Zhao, M.J., Li, J.R.: MOF template-directed fabrication of hierarchically structured electrocatalysts for efficient oxygen evolution reaction. Adv. Energy Mater. 7(12), 1602643 (2017)
CrossRef Google scholar
[21]
Chen, Z., Ha, Y., Jia, H., Yan, X., Chen, M., Liu, M., Wu, R.: Oriented transformation of Co-LDH into 2D/3D ZIF-67 to achieve Co–N–C hybrids for efficient overall water splitting. Adv. Energy Mater. 9(19), 1803918 (2019)
CrossRef Google scholar
[22]
Guo, Y., Tang, J., Henzie, J., Jiang, B., Xia, W., Chen, T., Bando, Y., Kang, Y.M., Hossain, M.S.A., Sugahara, Y., Yamauchi, Y.: Mesoporous iron-doped MoS2/ CoMo2S4 heterostructures through organic-metal cooperative interactions on spherical micelles for electrochemical water splitting. ACS Nano 14(4), 4141–4152 (2020)
CrossRef Google scholar
[23]
Yan, Y., Han, Y., Wang, F., Hu, Y., Shi, Q., Diao, G., Chen, M.: Bifunctional electrocatalyst of CoxFey-C for overall water splitting. J. Alloys Compd. 897, 163126 (2022)
CrossRef Google scholar
[24]
Wei, G., Xu, Z., Zhao, X., Wang, S., Kong, F., An, C.: N-doped CoSe2 nanomeshes as highly-efficient bifunctional electrocatalysts for water splitting. J. Alloys Compd. 893, 162328 (2022)
CrossRef Google scholar
[25]
Zhao, D., Dai, M., Liu, H., Duan, Z., Tan, X., Wu, X.: Bifunctional ZnCo2S4@ CoZn13 hybrid electrocatalysts for high efficient overall water splitting. J. Energy Chem. 69, 292–300 (2022)
CrossRef Google scholar
[26]
Zhu, S., Lei, J., Wu, S., Liu, L., Chen, T., Yuan, Y., Ding, C.: Construction of Fe-Co-Ni-Sx/NF nanomaterial as bifunctional electrocatalysts for water splitting. Mater. Lett. 311, 131549 (2022)
CrossRef Google scholar
[27]
Guo, L., Liu, Q., Liu, Y., Chen, Z., Jiang, Y., Jin, H., Zhou, T., Yang, J., Liu, Y.: Self-supported tremella-like MoS2-AB particles on nickel foam as bifunctional electrocatalysts for overall water splitting. Nano Energy 92, 106707 (2022)
CrossRef Google scholar
[28]
Yu, J., Li, W.J., Kao, G., Xu, C.Y., Chen, R., Liu, Q., Liu, J., Zhang, H., Wang, J.: In-situ growth of CNTs encapsulating P-doped NiSe2 nanoparticles on carbon framework as efficient bifunctional electrocatalyst for overall water splitting. J. Energy Chem 60, 111–120 (2021)
CrossRef Google scholar
[29]
Singh, V.K., Nakate, U.T., Bhuyan, P., Chen, J., Tran, D.T., Park, S.: Mo/Co doped 1T-VS2 nanostructures as a superior bifunctional electrocatalyst for overall water splitting in alkaline media. J. Mater. Chem. A Mater. Energy Sustain. 10(16), 9067–9079 (2022)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022
AI Summary AI Mindmap
PDF(2550 KB)

Accesses

Citations

Detail

Sections
Recommended

/