Received date: 07 Mar 2022
Accepted date: 15 May 2022
Published date: 15 Sep 2022
Copyright
In this paper, we present an edge detection scheme based on ghost imaging (GI) with a holistically-nested neural network. The so-called holistically-nested edge detection (HED) network is adopted to combine the fully convolutional neural network (CNN) with deep supervision to learn image edges effectively. Simulated data are used to train the HED network, and the unknown object’s edge information is reconstructed from the experimental data. The experiment results show that, when the compression ratio (CR) is 12.5%, this scheme can obtain a high-quality edge information with a sub-Nyquist sampling ratio and has a better performance than those using speckle-shifting GI (SSGI), compressed ghost edge imaging (CGEI) and subpixel-shifted GI (SPSGI). Indeed, the proposed scheme can have a good signal-to-noise ratio performance even if the sub-Nyquist sampling ratio is greater than 5.45%. Since the HED network is trained by numerical simulations before the experiment, this proposed method provides a promising way for achieving edge detection with small measurement times and low time cost.
Shengmei Zhao , Yifang Cui , Xing He , Le Wang . Ghost edge detection based on HED network[J]. Frontiers of Optoelectronics, 2022 , 15(3) : 31 . DOI: 10.1007/s12200-022-00036-1
1 |
Padgett, M.J., Boyd, R.W.: An introduction to ghost imaging: quantum and classical. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 375(2099), 20160233 (2017)
|
2 |
Shapiro, J.H., Boyd, R.W.: The physics of ghost imaging. Quant. Inform. Process. 11(4), 949–993 (2012)
|
3 |
Pittman, T.B., Shih, Y.H., Strekalov, D.V., Sergienko, A.V.: Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52(5), R3429–R3432 (1995)
|
4 |
Bennink, R.S., Bentley, S.J., Boyd, R.W.: „Two-Photon” coincidence imaging with a classical source. Phys. Rev. Lett. 89(11), 113601 (2002)
|
5 |
Valencia, A., Scarcelli, G., D’Angelo, M., Shih, Y.: Two-photon imaging with thermal light. Phys Rev Lett. 94(6), 063601 (2005)
|
6 |
Liu, X.F., Chen, X.H., Yao, X.R., Yu, W.K., Zhai, G.J., Wu, L.A.: Lensless ghost imaging with sunlight. Opt. Lett. 39(8), 2314–2317 (2014)
|
7 |
Shapiro, J.H.: Computational ghost imaging. Phys. Rev. A 78(6), 061802 (2008)
|
8 |
Deng, C., Gong, W., Han, S.: Pulse-compression ghost imaging lidar via coherent detection. Opt. Express 24(23), 25983–25994 (2016)
|
9 |
Radwell, N., Mitchell, K.J., Gibson, G.M., Edgar, M.P., Bowman, R., Padgett, M.J.: Single-pixel infrared and visible microscope. Optica 1(5), 285–289 (2014)
|
10 |
Wang, L., Zhao, S., Cheng, W., Gong, L., Chen, H.: Optical image hiding based on computational ghost imaging. Opt. Commun. 366, 314–320 (2016)
|
11 |
Clemente, P., Durán, V., Torres-Company, V., Tajahuerce, E., Lancis, J.: Optical encryption based on computational ghost imaging. Opt. Lett. 35(14), 2391–2393 (2010)
|
12 |
Zhao, S., Wang, L., Liang, W., Cheng, W., Gong, L.: High performance optical encryption based on computational ghost imaging with qr code and compressive sensing technique. Opt. Commun. 353, 90–95 (2015)
|
13 |
Gong, W.: High-resolution pseudo-inverse ghost imaging. Photon. Res. 3(5), 234–237 (2015)
|
14 |
Wang, L., Zhao, S.: Fast reconstructed and high-quality ghost imaging with fast walsh–hadamard transform. Photon. Res. 4(6), 240–244 (2016)
|
15 |
Yin, M.Q., Wang, L., Zhao, S.M.: Experimental demonstration of influence of underwater turbulence on ghost imaging. Chin. Phys. B 28(9), 094201 (2019)
|
16 |
Wang, L., Zhao, S.: Multiple-input single-output ghost imaging. IEE. Photon. J. 12(3), 1–13 (2020)
|
17 |
Liu, X.F., Yao, X.R., Lan, R.M., Wang, C., Zhai, G.J.: Edge detection based on gradient ghost imaging. Opt. Express 23(26), 33802–33811 (2015)
|
18 |
Mao, T., Chen, Q., He, W., Zou, Y., Dai, H., Gu, G.: Speckle-shifting ghost imaging. IEE. Photon. J. 8(4), 1–10 (2016)
|
19 |
Wang, L., Zou, L., Zhao, S.: Edge detection based on subpixel-speckle shifting ghost imaging. Opt. Commun. 407, 181–185 (2018)
|
20 |
Yuan, S., Xiang, D., Liu, X., Zhou, X., Bing, P.: Edge detection based on computational ghost imaging with structured illuminations. Opt. Commun. 410, 350–355 (2018)
|
21 |
Ren, H., Zhao, S., Gruska, J.: Edge detection based on single-pixel imaging. Opt. Express 26(5), 5501–5511 (2018)
|
22 |
Ren, H.D., Wang, L., Zhao, S.M.: Efficient edge detection based on ghost imaging. OSA Continuum 2(1), 64–73 (2019)
|
23 |
Guo, H., He, R., Wei, C., Lin, Z., Wang, L., Zhao, S.: Compressed ghost edge imaging. Chin. Opt. Lett. 17(7), 071101 (2019)
|
24 |
Chen, Y., Li, X., Cheng, Z., Cheng, Y., Zhai, X.: Multidirectional edge detection based on gradient ghost imaging. Optik (Stuttg.) 207, 163768 (2020)
|
25 |
Lyu, M., Wang, W., Wang, H., Wang, H., Li, G., Chen, N., Situ, G.: Deep-learning-based ghost imaging. Sci. Rep. 7(1), 17865 (2017)
|
26 |
Jiao, S., Gao, Y., Feng, J., Lei, T., Yuan, X.: Does deep learning always outperform simple linear regression in optical imaging? Opt. Express 28(3), 3717–3731 (2020)
|
27 |
Wang, F., Wang, H., Wang, H., Li, G., Situ, G.: Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging. Opt. Express 27(18), 25560–25572 (2019)
|
28 |
Ni, Y., Zhou, D., Yuan, S., Bai, X., Xu, Z., Chen, J., Li, C., Zhou, X.: Color computational ghost imaging based on a generative adversarial network. Opt. Lett. 46(8), 1840–1843 (2021)
|
29 |
Zhang, H., Duan, D.: Computational ghost imaging with compressed sensing based on a convolutional neural network. Chin. Opt. Lett. 19(10), 101101 (2021)
|
30 |
Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
|
31 |
Li, C., Yin, W., Zhang, Y.: User’s guide for tval3: Tv minimization by augmented lagrangian and alternating direction algorithms. CAAM Rep 20(46–47), 4 (2009)
|
32 |
Li, C., Yin, W., Jiang, H., Zhang, Y.: An efficient augmented lagrangian method with applications to total variation minimization. Comput. Optim. Appl. 56(3), 507–530 (2013)
|
33 |
Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision. pp. 1395–1403 (2015)
|
34 |
Xu, Z., Luo, H., Hui, B., Chang, Z.: Contour detection using an improved holistically-nested edge detection network. In: Global Intelligence Industry Conference (GIIC 2018), vol. 10835. International Society for Optics and Photonics, p. 1083503 (2018)
|
35 |
Lou, L., Zang, S.: Research on edge detection method based on improved HED network. J. Phys. Conf. Ser. 1607(1), 012068 (2020)
|
/
〈 | 〉 |