Ghost edge detection based on HED network
Shengmei Zhao, Yifang Cui, Xing He, Le Wang
Ghost edge detection based on HED network
In this paper, we present an edge detection scheme based on ghost imaging (GI) with a holistically-nested neural network. The so-called holistically-nested edge detection (HED) network is adopted to combine the fully convolutional neural network (CNN) with deep supervision to learn image edges effectively. Simulated data are used to train the HED network, and the unknown object’s edge information is reconstructed from the experimental data. The experiment results show that, when the compression ratio (CR) is 12.5%, this scheme can obtain a high-quality edge information with a sub-Nyquist sampling ratio and has a better performance than those using speckle-shifting GI (SSGI), compressed ghost edge imaging (CGEI) and subpixel-shifted GI (SPSGI). Indeed, the proposed scheme can have a good signal-to-noise ratio performance even if the sub-Nyquist sampling ratio is greater than 5.45%. Since the HED network is trained by numerical simulations before the experiment, this proposed method provides a promising way for achieving edge detection with small measurement times and low time cost.
Edge detection / Ghost imaging (GI) / Holistically-nested neural network / Compression ratio (CR) / Signal-to-noise ratio (SNR)
[1] |
Padgett, M.J., Boyd, R.W.: An introduction to ghost imaging: quantum and classical. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 375(2099), 20160233 (2017)
CrossRef
Google scholar
|
[2] |
Shapiro, J.H., Boyd, R.W.: The physics of ghost imaging. Quant. Inform. Process. 11(4), 949–993 (2012)
CrossRef
Google scholar
|
[3] |
Pittman, T.B., Shih, Y.H., Strekalov, D.V., Sergienko, A.V.: Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52(5), R3429–R3432 (1995)
CrossRef
Google scholar
|
[4] |
Bennink, R.S., Bentley, S.J., Boyd, R.W.: „Two-Photon” coincidence imaging with a classical source. Phys. Rev. Lett. 89(11), 113601 (2002)
CrossRef
Google scholar
|
[5] |
Valencia, A., Scarcelli, G., D’Angelo, M., Shih, Y.: Two-photon imaging with thermal light. Phys Rev Lett. 94(6), 063601 (2005)
CrossRef
Google scholar
|
[6] |
Liu, X.F., Chen, X.H., Yao, X.R., Yu, W.K., Zhai, G.J., Wu, L.A.: Lensless ghost imaging with sunlight. Opt. Lett. 39(8), 2314–2317 (2014)
CrossRef
Google scholar
|
[7] |
Shapiro, J.H.: Computational ghost imaging. Phys. Rev. A 78(6), 061802 (2008)
CrossRef
Google scholar
|
[8] |
Deng, C., Gong, W., Han, S.: Pulse-compression ghost imaging lidar via coherent detection. Opt. Express 24(23), 25983–25994 (2016)
CrossRef
Google scholar
|
[9] |
Radwell, N., Mitchell, K.J., Gibson, G.M., Edgar, M.P., Bowman, R., Padgett, M.J.: Single-pixel infrared and visible microscope. Optica 1(5), 285–289 (2014)
CrossRef
Google scholar
|
[10] |
Wang, L., Zhao, S., Cheng, W., Gong, L., Chen, H.: Optical image hiding based on computational ghost imaging. Opt. Commun. 366, 314–320 (2016)
CrossRef
Google scholar
|
[11] |
Clemente, P., Durán, V., Torres-Company, V., Tajahuerce, E., Lancis, J.: Optical encryption based on computational ghost imaging. Opt. Lett. 35(14), 2391–2393 (2010)
CrossRef
Google scholar
|
[12] |
Zhao, S., Wang, L., Liang, W., Cheng, W., Gong, L.: High performance optical encryption based on computational ghost imaging with qr code and compressive sensing technique. Opt. Commun. 353, 90–95 (2015)
CrossRef
Google scholar
|
[13] |
Gong, W.: High-resolution pseudo-inverse ghost imaging. Photon. Res. 3(5), 234–237 (2015)
CrossRef
Google scholar
|
[14] |
Wang, L., Zhao, S.: Fast reconstructed and high-quality ghost imaging with fast walsh–hadamard transform. Photon. Res. 4(6), 240–244 (2016)
CrossRef
Google scholar
|
[15] |
Yin, M.Q., Wang, L., Zhao, S.M.: Experimental demonstration of influence of underwater turbulence on ghost imaging. Chin. Phys. B 28(9), 094201 (2019)
CrossRef
Google scholar
|
[16] |
Wang, L., Zhao, S.: Multiple-input single-output ghost imaging. IEE. Photon. J. 12(3), 1–13 (2020)
CrossRef
Google scholar
|
[17] |
Liu, X.F., Yao, X.R., Lan, R.M., Wang, C., Zhai, G.J.: Edge detection based on gradient ghost imaging. Opt. Express 23(26), 33802–33811 (2015)
CrossRef
Google scholar
|
[18] |
Mao, T., Chen, Q., He, W., Zou, Y., Dai, H., Gu, G.: Speckle-shifting ghost imaging. IEE. Photon. J. 8(4), 1–10 (2016)
CrossRef
Google scholar
|
[19] |
Wang, L., Zou, L., Zhao, S.: Edge detection based on subpixel-speckle shifting ghost imaging. Opt. Commun. 407, 181–185 (2018)
CrossRef
Google scholar
|
[20] |
Yuan, S., Xiang, D., Liu, X., Zhou, X., Bing, P.: Edge detection based on computational ghost imaging with structured illuminations. Opt. Commun. 410, 350–355 (2018)
CrossRef
Google scholar
|
[21] |
Ren, H., Zhao, S., Gruska, J.: Edge detection based on single-pixel imaging. Opt. Express 26(5), 5501–5511 (2018)
CrossRef
Google scholar
|
[22] |
Ren, H.D., Wang, L., Zhao, S.M.: Efficient edge detection based on ghost imaging. OSA Continuum 2(1), 64–73 (2019)
CrossRef
Google scholar
|
[23] |
Guo, H., He, R., Wei, C., Lin, Z., Wang, L., Zhao, S.: Compressed ghost edge imaging. Chin. Opt. Lett. 17(7), 071101 (2019)
CrossRef
Google scholar
|
[24] |
Chen, Y., Li, X., Cheng, Z., Cheng, Y., Zhai, X.: Multidirectional edge detection based on gradient ghost imaging. Optik (Stuttg.) 207, 163768 (2020)
CrossRef
Google scholar
|
[25] |
Lyu, M., Wang, W., Wang, H., Wang, H., Li, G., Chen, N., Situ, G.: Deep-learning-based ghost imaging. Sci. Rep. 7(1), 17865 (2017)
CrossRef
Google scholar
|
[26] |
Jiao, S., Gao, Y., Feng, J., Lei, T., Yuan, X.: Does deep learning always outperform simple linear regression in optical imaging? Opt. Express 28(3), 3717–3731 (2020)
CrossRef
Google scholar
|
[27] |
Wang, F., Wang, H., Wang, H., Li, G., Situ, G.: Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging. Opt. Express 27(18), 25560–25572 (2019)
CrossRef
Google scholar
|
[28] |
Ni, Y., Zhou, D., Yuan, S., Bai, X., Xu, Z., Chen, J., Li, C., Zhou, X.: Color computational ghost imaging based on a generative adversarial network. Opt. Lett. 46(8), 1840–1843 (2021)
CrossRef
Google scholar
|
[29] |
Zhang, H., Duan, D.: Computational ghost imaging with compressed sensing based on a convolutional neural network. Chin. Opt. Lett. 19(10), 101101 (2021)
CrossRef
Google scholar
|
[30] |
Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
CrossRef
Google scholar
|
[31] |
Li, C., Yin, W., Zhang, Y.: User’s guide for tval3: Tv minimization by augmented lagrangian and alternating direction algorithms. CAAM Rep 20(46–47), 4 (2009)
|
[32] |
Li, C., Yin, W., Jiang, H., Zhang, Y.: An efficient augmented lagrangian method with applications to total variation minimization. Comput. Optim. Appl. 56(3), 507–530 (2013)
CrossRef
Google scholar
|
[33] |
Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision. pp. 1395–1403 (2015)
CrossRef
Google scholar
|
[34] |
Xu, Z., Luo, H., Hui, B., Chang, Z.: Contour detection using an improved holistically-nested edge detection network. In: Global Intelligence Industry Conference (GIIC 2018), vol. 10835. International Society for Optics and Photonics, p. 1083503 (2018)
|
[35] |
Lou, L., Zang, S.: Research on edge detection method based on improved HED network. J. Phys. Conf. Ser. 1607(1), 012068 (2020)
CrossRef
Google scholar
|
/
〈 | 〉 |