Ghost edge detection based on HED network

Shengmei Zhao, Yifang Cui, Xing He, Le Wang

PDF(2601 KB)
PDF(2601 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (3) : 31. DOI: 10.1007/s12200-022-00036-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Ghost edge detection based on HED network

Author information +
History +

Abstract

In this paper, we present an edge detection scheme based on ghost imaging (GI) with a holistically-nested neural network. The so-called holistically-nested edge detection (HED) network is adopted to combine the fully convolutional neural network (CNN) with deep supervision to learn image edges effectively. Simulated data are used to train the HED network, and the unknown object’s edge information is reconstructed from the experimental data. The experiment results show that, when the compression ratio (CR) is 12.5%, this scheme can obtain a high-quality edge information with a sub-Nyquist sampling ratio and has a better performance than those using speckle-shifting GI (SSGI), compressed ghost edge imaging (CGEI) and subpixel-shifted GI (SPSGI). Indeed, the proposed scheme can have a good signal-to-noise ratio performance even if the sub-Nyquist sampling ratio is greater than 5.45%. Since the HED network is trained by numerical simulations before the experiment, this proposed method provides a promising way for achieving edge detection with small measurement times and low time cost.

Graphical abstract

Keywords

Edge detection / Ghost imaging (GI) / Holistically-nested neural network / Compression ratio (CR) / Signal-to-noise ratio (SNR)

Cite this article

Download citation ▾
Shengmei Zhao, Yifang Cui, Xing He, Le Wang. Ghost edge detection based on HED network. Front. Optoelectron., 2022, 15(3): 31 https://doi.org/10.1007/s12200-022-00036-1

References

[1]
Padgett, M.J., Boyd, R.W.: An introduction to ghost imaging: quantum and classical. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 375(2099), 20160233 (2017)
CrossRef Google scholar
[2]
Shapiro, J.H., Boyd, R.W.: The physics of ghost imaging. Quant. Inform. Process. 11(4), 949–993 (2012)
CrossRef Google scholar
[3]
Pittman, T.B., Shih, Y.H., Strekalov, D.V., Sergienko, A.V.: Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52(5), R3429–R3432 (1995)
CrossRef Google scholar
[4]
Bennink, R.S., Bentley, S.J., Boyd, R.W.: „Two-Photon” coincidence imaging with a classical source. Phys. Rev. Lett. 89(11), 113601 (2002)
CrossRef Google scholar
[5]
Valencia, A., Scarcelli, G., D’Angelo, M., Shih, Y.: Two-photon imaging with thermal light. Phys Rev Lett. 94(6), 063601 (2005)
CrossRef Google scholar
[6]
Liu, X.F., Chen, X.H., Yao, X.R., Yu, W.K., Zhai, G.J., Wu, L.A.: Lensless ghost imaging with sunlight. Opt. Lett. 39(8), 2314–2317 (2014)
CrossRef Google scholar
[7]
Shapiro, J.H.: Computational ghost imaging. Phys. Rev. A 78(6), 061802 (2008)
CrossRef Google scholar
[8]
Deng, C., Gong, W., Han, S.: Pulse-compression ghost imaging lidar via coherent detection. Opt. Express 24(23), 25983–25994 (2016)
CrossRef Google scholar
[9]
Radwell, N., Mitchell, K.J., Gibson, G.M., Edgar, M.P., Bowman, R., Padgett, M.J.: Single-pixel infrared and visible microscope. Optica 1(5), 285–289 (2014)
CrossRef Google scholar
[10]
Wang, L., Zhao, S., Cheng, W., Gong, L., Chen, H.: Optical image hiding based on computational ghost imaging. Opt. Commun. 366, 314–320 (2016)
CrossRef Google scholar
[11]
Clemente, P., Durán, V., Torres-Company, V., Tajahuerce, E., Lancis, J.: Optical encryption based on computational ghost imaging. Opt. Lett. 35(14), 2391–2393 (2010)
CrossRef Google scholar
[12]
Zhao, S., Wang, L., Liang, W., Cheng, W., Gong, L.: High performance optical encryption based on computational ghost imaging with qr code and compressive sensing technique. Opt. Commun. 353, 90–95 (2015)
CrossRef Google scholar
[13]
Gong, W.: High-resolution pseudo-inverse ghost imaging. Photon. Res. 3(5), 234–237 (2015)
CrossRef Google scholar
[14]
Wang, L., Zhao, S.: Fast reconstructed and high-quality ghost imaging with fast walsh–hadamard transform. Photon. Res. 4(6), 240–244 (2016)
CrossRef Google scholar
[15]
Yin, M.Q., Wang, L., Zhao, S.M.: Experimental demonstration of influence of underwater turbulence on ghost imaging. Chin. Phys. B 28(9), 094201 (2019)
CrossRef Google scholar
[16]
Wang, L., Zhao, S.: Multiple-input single-output ghost imaging. IEE. Photon. J. 12(3), 1–13 (2020)
CrossRef Google scholar
[17]
Liu, X.F., Yao, X.R., Lan, R.M., Wang, C., Zhai, G.J.: Edge detection based on gradient ghost imaging. Opt. Express 23(26), 33802–33811 (2015)
CrossRef Google scholar
[18]
Mao, T., Chen, Q., He, W., Zou, Y., Dai, H., Gu, G.: Speckle-shifting ghost imaging. IEE. Photon. J. 8(4), 1–10 (2016)
CrossRef Google scholar
[19]
Wang, L., Zou, L., Zhao, S.: Edge detection based on subpixel-speckle shifting ghost imaging. Opt. Commun. 407, 181–185 (2018)
CrossRef Google scholar
[20]
Yuan, S., Xiang, D., Liu, X., Zhou, X., Bing, P.: Edge detection based on computational ghost imaging with structured illuminations. Opt. Commun. 410, 350–355 (2018)
CrossRef Google scholar
[21]
Ren, H., Zhao, S., Gruska, J.: Edge detection based on single-pixel imaging. Opt. Express 26(5), 5501–5511 (2018)
CrossRef Google scholar
[22]
Ren, H.D., Wang, L., Zhao, S.M.: Efficient edge detection based on ghost imaging. OSA Continuum 2(1), 64–73 (2019)
CrossRef Google scholar
[23]
Guo, H., He, R., Wei, C., Lin, Z., Wang, L., Zhao, S.: Compressed ghost edge imaging. Chin. Opt. Lett. 17(7), 071101 (2019)
CrossRef Google scholar
[24]
Chen, Y., Li, X., Cheng, Z., Cheng, Y., Zhai, X.: Multidirectional edge detection based on gradient ghost imaging. Optik (Stuttg.) 207, 163768 (2020)
CrossRef Google scholar
[25]
Lyu, M., Wang, W., Wang, H., Wang, H., Li, G., Chen, N., Situ, G.: Deep-learning-based ghost imaging. Sci. Rep. 7(1), 17865 (2017)
CrossRef Google scholar
[26]
Jiao, S., Gao, Y., Feng, J., Lei, T., Yuan, X.: Does deep learning always outperform simple linear regression in optical imaging? Opt. Express 28(3), 3717–3731 (2020)
CrossRef Google scholar
[27]
Wang, F., Wang, H., Wang, H., Li, G., Situ, G.: Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging. Opt. Express 27(18), 25560–25572 (2019)
CrossRef Google scholar
[28]
Ni, Y., Zhou, D., Yuan, S., Bai, X., Xu, Z., Chen, J., Li, C., Zhou, X.: Color computational ghost imaging based on a generative adversarial network. Opt. Lett. 46(8), 1840–1843 (2021)
CrossRef Google scholar
[29]
Zhang, H., Duan, D.: Computational ghost imaging with compressed sensing based on a convolutional neural network. Chin. Opt. Lett. 19(10), 101101 (2021)
CrossRef Google scholar
[30]
Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
CrossRef Google scholar
[31]
Li, C., Yin, W., Zhang, Y.: User’s guide for tval3: Tv minimization by augmented lagrangian and alternating direction algorithms. CAAM Rep 20(46–47), 4 (2009)
[32]
Li, C., Yin, W., Jiang, H., Zhang, Y.: An efficient augmented lagrangian method with applications to total variation minimization. Comput. Optim. Appl. 56(3), 507–530 (2013)
CrossRef Google scholar
[33]
Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision. pp. 1395–1403 (2015)
CrossRef Google scholar
[34]
Xu, Z., Luo, H., Hui, B., Chang, Z.: Contour detection using an improved holistically-nested edge detection network. In: Global Intelligence Industry Conference (GIIC 2018), vol. 10835. International Society for Optics and Photonics, p. 1083503 (2018)
[35]
Lou, L., Zang, S.: Research on edge detection method based on improved HED network. J. Phys. Conf. Ser. 1607(1), 012068 (2020)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022
AI Summary AI Mindmap
PDF(2601 KB)

Accesses

Citations

Detail

Sections
Recommended

/