REVIEW ARTICLE

Toward memristive in-memory computing: principles and applications

  • Han Bao , 1 ,
  • Houji Zhou 1 ,
  • Jiancong Li 1 ,
  • Huaizhi Pei 1 ,
  • Jing Tian 1 ,
  • Ling Yang 1 ,
  • Shengguang Ren 1 ,
  • Shaoqin Tong 1 ,
  • Yi Li , 1,2 ,
  • Yuhui He 1,2 ,
  • Jia Chen 3 ,
  • Yimao Cai 4 ,
  • Huaqiang Wu 5 ,
  • Qi Liu 6 ,
  • Qing Wan 7 ,
  • Xiangshui Miao , 1,2
Expand
  • 1. School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2. Hubei Yangtze Memory Laboratories, Wuhan 430205, China
  • 3. AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park, Hong Kong, China
  • 4. School of Integrated Circuits, Peking University, Beijing 100871, China
  • 5. School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
  • 6. Frontier Institute of Chip and System, Fudan University, Shanghai 200433, China
  • 7. School of Electronic Science and Engineering, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China

Received date: 01 Mar 2022

Accepted date: 07 Mar 2022

Published date: 15 Jun 2022

Copyright

2022 The Author(s) 2022

Abstract

With the rapid growth of computer science and big data, the traditional von Neumann architecture suffers the aggravating data communication costs due to the separated structure of the processing units and memories. Memristive in-memory computing paradigm is considered as a prominent candidate to address these issues, and plentiful applications have been demonstrated and verified. These applications can be broadly categorized into two major types: soft computing that can tolerant uncertain and imprecise results, and hard computing that emphasizes explicit and precise numerical results for each task, leading to different requirements on the computational accuracies and the corresponding hardware solutions. In this review, we conduct a thorough survey of the recent advances of memristive in-memory computing applications, both on the soft computing type that focuses on artificial neural networks and other machine learning algorithms, and the hard computing type that includes scientific computing and digital image processing. At the end of the review, we discuss the remaining challenges and future opportunities of memristive in-memory computing in the incoming Artificial Intelligence of Things era.

Cite this article

Han Bao , Houji Zhou , Jiancong Li , Huaizhi Pei , Jing Tian , Ling Yang , Shengguang Ren , Shaoqin Tong , Yi Li , Yuhui He , Jia Chen , Yimao Cai , Huaqiang Wu , Qi Liu , Qing Wan , Xiangshui Miao . Toward memristive in-memory computing: principles and applications[J]. Frontiers of Optoelectronics, 2022 , 15(2) : 23 . DOI: 10.1007/s12200-022-00025-4

1
Jordan,M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)

DOI

2
Kuznetsova,A., Rom,H., Alldrin,N., Uijlings, J., Krasin,I., Pont-Tuset,J., Kamali, S., Popov,S., Malloci,M., Kolesnikov, A., Duerig,T., Ferrari,V.: The open images dataset v4. Int. J. Comput. Vis. 128(7), 1956–1981 (2020)

DOI

3
Deng,J., Dong,W., Socher,R., Li, L.J., Li,K., Fei-Fei,L.: Imagenet: a large-scale hierarchical image database. In: Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 248–255 (2009)

DOI

4
Simonyan,K., Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556 (2014)

5
He,K., Zhang,X., Ren,S., Sun, J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 770–778 (2016)

DOI

6
Keckler,S.W., Dally,W.J., Khailany,B., Garland, M., Glasco,D.: GPUs and the future of parallel computing. IEEE Micro 31(5), 7–17 (2011)

DOI

7
Owens,J.D., Houston, M., Luebke,D., Green,S., Stone,J.E., Phillips,J.C.: GPU computing. Proc. IEEE 96(5), 879–899 (2008)

DOI

8
Mutlu,O., Ghose,S., Gómez-Luna,J., Ausavarungnirun,R.: Processing data where it makes sense: enabling in-memory computation. Microprocess. Microsyst. 67, 28–41 (2019)

DOI

9
Chua,L.O.: How we predicted the memristor. Nat. Electron. 1(5), 322 (2018)

DOI

10
Williams,R.S.: How we found the missing memristor. In: Tetzlaff, R. (ed.) Memristors and Memristive Systems, pp. 3–16. Springer, New York (2014)

DOI

11
Chua,L.: Memristor—the missing circuit element. IEEE Trans Circuit Theory 18(5), 507–519 (1971)

DOI

12
Strukov,D.B., Snider, G.S., Stewart,D.R., Williams,R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)

DOI

13
Zidan,M.A., Strachan, J.P., Lu,W.D.: The future of electronics based on memristive systems. Nat. Electron. 1(1), 22–29 (2018)

DOI

14
Lee,J., Lu,W.D.: On-demand reconfiguration of nanomaterials: when electronics meets ionics. Adv. Mater. 30(1), 1702770 (2018)

DOI

15
Sun,W., Gao,B., Chi,M., Xia, Q., Yang,J.J., Qian,H., Wu,H.: Understanding memristive switching via in situ characterization and device modeling. Nat. Commun. 10(1), 3453 (2019)

DOI

16
Cheng,L., Li,Y., Yin,K.S., Hu, S.Y., Su,Y.T., Jin,M.M., Wang,Z.R., Chang,T.C., Miao, X.S.: Functional demonstration of a memristive arithmetic logic unit (MemALU) for in-memory computing. Adv. Func. Mater. 29(49), 1905660 (2019)

DOI

17
Yang,L., Cheng,L., Li,Y., Li, H., Li,J., Chang,T.C., Miao,X.: Cryptographic key generation and in situ encryption in one-transistor-one-resistor memristors for hardware security. Adv. Electron. Mater. 7(5), 2001182 (2021)

DOI

18
Karunaratne,G., Le Gallo, M., Cherubini,G., Benini,L., Rahimi, A., Sebastian,A.: In-memory hyperdimensional computing. Nat. Electron. 3(6), 327–337 (2020)

DOI

19
Junsangsri,P., Lombardi, F.: A memristor-based TCAM (ternary content addressable memory) cell: design and evaluation. In: Proceedings of the Great Lakes Symposium on VLSI. ACM, 311–314 (2012)

DOI

20
Graves,C.E., Li,C., Sheng,X., Miller, D., Ignowski,J., Kiyama,L., Strachan, J.P.: In-memory computing with memristor content addressable memories for pattern matching. Adv. Mater. 32(37), e2003437 (2020)

DOI

21
Hu,M., Graves, C.E., Li,C., Li,Y., Ge,N., Montgomery,E., Davila,N., Jiang,H., Williams,R.S., Yang,J.J., Xia,Q., Strachan,J.P.: Memristor-based analog computation and neural network classification with a dot product engine. Adv. Mater. 30(9), 1705914 (2018)

DOI

22
Yao,P., Wu,H., Gao,B., Eryilmaz, S.B., Huang,X., Zhang,W., Zhang,Q., Deng,N., Shi, L., Wong,H.P., Qian,H.: Face classification using electronic synapses. Nat. Commun. 8(1), 15199 (2017)

DOI

23
Amirsoleimani,A., Alibart, F., Yon,V., Xu,J., Pazhouhandeh, M.R., Ecoffey,S., Beilliard,Y., Genov,R., Drouin,D.: In-memory vector-matrix multiplication in monolithic complementary metal–oxide–semiconductor-memristor integrated circuits: design choices, challenges, and perspectives. Adv. Intell. Syst. 2(11), 2000115 (2020)

DOI

24
Xia,Q., Yang,J.J.: Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18(4), 309–323 (2019)

DOI

25
Yan,B., Li,B., Qiao,X., Xue, C.X., Chang,M.F., Chen,Y., Li,H.: Resistive memory-based in-memory computing: from device and large-scale integration system perspectives. Adv. Intell. Syst. 1(7), 1900068 (2019)

DOI

26
Zhang,T., Yang,K., Xu,X., Cai, Y., Yang,Y., Huang,R.: Memristive devices and networks for brain-inspired computing. Phys. Status Solidi (RRL) Rapid Res. Lett. 13(8), 1900029 (2019)

DOI

27
Shi,T., Wang,R., Wu,Z., Sun, Y., An,J., Liu,Q.: A review of resistive switching devices: performance improvement, characterization, and applications. Small Struct. 2(4), 2000109 (2021)

DOI

28
Hung,J.M., Jhang,C.J., Wu,P.C., Chiu, Y.C., Chang,M.F.: Challenges and trends of nonvolatile in-memory-computation circuits for AI edge devices. IEEE Trans. Electron Devices 67(4), 1444–1453 (2020)

DOI

29
Guo,X., Bayat,F.M., Bavandpour,M., Klachko,M., Mahmoodi, M., Prezioso,M., Likharev,K., Strukov D.: Fast, energy-efficient, robust, and reproducible mixed-signal neuromorphic classifier based on embedded NOR flash memory technology. In: Proceedings of 2017 IEEE International Electron Devices Meeting (IEDM). IEEE, 6.5.1–6.5.4 (2017)

DOI

30
Ambrogio,S., Narayanan, P., Tsai,H., Shelby,R.M., Boybat, I., di Nolfo,C., Sidler,S., Giordano, M., Bodini,M., Farinha,N.C.P., Killeen, B., Cheng,C., Jaoudi,Y., Burr,G.W.: Equivalent-accuracy accelerated neural-network training using analogue memory. Nature 558(7708), 60–67 (2018)

DOI

31
Ni,K., Yin,X., Laguna,A.F., Joshi, S., Duenkel,S., Trentzsch,M., Müller, J., Beyer,S., Niemier,M., Hu,X.S.: Ferroelectric ternary content-addressable memory for one-shot learning. Nat. Electron. 2(11), 521–529 (2019)

DOI

32
Jung,S., Lee,H., Myung,S., Kim, H., Yoon,S.K., Kwon,S.W., Ju,Y., Kim,M., Yi, W., Han,S., Kwon,B., Seo,B., Lee,K., Koh, G.H., Lee,K., Song,Y., Choi,C., Ham,D., Kim, S.J.: A crossbar array of magnetoresistive memory devices for in-memory computing. Nature 601(7892), 211–216 (2022)

DOI

33
Chen,J., Li,J., Li,Y., Miao, X.: Multiply accumulate operations in memristor crossbar arrays for analog computing. J. Semicond. 42(1), 013104 (2021)

DOI

34
Sebastian,A., Le Gallo, M., Khaddam-Aljameh,R., Eleftheriou,E.: Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15(7), 529–544 (2020)

DOI

35
Qin,Y.F., Bao,H., Wang,F., Chen, J., Li,Y., Miao,X.S.: Recent progress on memristive convolutional neural networks for edge intelligence. Adv. Intell. Syst. 2(11), 2000114 (2020)

DOI

36
Ibrahim,D.: An overview of soft computing. Procedia Comput. Sci. 102, 34–38 (2016)

DOI

37
Yin,S., Sun,X., Yu,S., Seo, J.: High-throughput in-memory computing for binary deep neural networks with monolithically integrated RRAM and 90-nm CMOS. IEEE Trans. Electron Devices 67(10), 4185–4192 (2020)

DOI

38
Yu,S., Li,Z., Chen,P.Y., Wu, H., Gao,B., Wang,D., Wu,W., QianH.: Binary neural network with 16 Mb RRAM macro chip for classification and online training. In: Proceedings of 2016 IEEE International Electron Devices Meeting (IEDM). IEEE, 16.2.1–16.2.4 (2016)

DOI

39
Xue,C.X., Chiu,Y.C., Liu,T.W., Huang, T.Y., Liu,J.S., Chang,T.W., Kao,H.Y., Wang,J.H., Wei, S.Y., Lee,C.Y., Huang,S.P., Hung,J.M., Teng,S.H., Wei, W.C., Chen,Y.R., Hsu,T.H., Chen,Y.K., Lo,Y.C., Wen, T.H., Lo,C.C., Liu,R.S., Hsieh,C.C., Tang,K.T., Ho, M.S., Su,C.Y., Chou,C.C., Chih,Y.D., Chang,M.F.: A CMOS-integrated compute-in-memory macro based on resistive random-access memory for AI edge devices. Nat. Electron. 4(1), 81–90 (2021)

DOI

40
Kim,H., Mahmoodi, M.R., Nili,H., Strukov,D.B.: 4K-memristor analog-grade passive crossbar circuit. Nat. Commun. 12(1), 5198 (2021)

DOI

41
Yao,P., Wu,H., Gao,B., Tang, J., Zhang,Q., Zhang,W., Yang,J.J., Qian,H.: Fully hardware-implemented memristor convolutional neural network. Nature 577(7792), 641–646 (2020)

DOI

42
Wang,Z., Li,C., Lin,P., Rao, M., Nie,Y., Song,W., Qiu,Q., Li,Y., Yan, P., Strachan,J.P., Ge,N., McDonald, N., Wu,Q., Hu,M., Wu,H., Williams,R.S., Xia,Q., Yang,J.J.: In situ training of feed-forward and recurrent convolutional memristor networks. Nat. Mach. Intell. 1(9), 434–442 (2019)

DOI

43
Wang,Z., Li,C., Song,W., Rao, M., Belkin,D., Li,Y., Yan,P., Jiang,H., Lin, P., Hu,M., Strachan,J.P., Ge,N., Barnell,M., Wu, Q., Barto,A.G., Qiu,Q., Williams, R.S., Xia,Q., Yang,J.J.: Reinforcement learning with analogue memristor arrays. Nat. Electron. 2(3), 115–124 (2019)

DOI

44
Li,C., Wang,Z., Rao,M., Belkin, D., Song,W., Jiang,H., Yan,P., Li,Y., Lin, P., Hu,M., Ge,N., Strachan, J.P., Barnell,M., Wu,Q., Williams, R.S., Yang,J.J., Xia,Q.: Long short-term memory networks in memristor crossbar arrays. Nat. Mach. Intell. 1(1), 49–57 (2019)

DOI

45
Li,C., Belkin, D., Li,Y., Yan,P., Hu,M., Ge,N., Jiang, H., Montgomery,E., Lin,P., Wang,Z., Song,W., Strachan, J.P., Barnell,M., Wu,Q., Williams, R.S., Yang,J.J., Xia,Q.: Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nat. Commun. 9(1), 2385 (2018)

DOI

46
Cai,F., Correll, J.M., Lee,S.H., Lim,Y., Bothra, V., Zhang,Z., Flynn,M.P., Lu,W.D.: A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations. Nat. Electron. 2(7), 290–299 (2019)

DOI

47
Sheridan,P.M., Cai,F., Du,C., Ma, W., Zhang,Z., Lu,W.D.: Sparse coding with memristor networks. Nat. Nanotechnol. 12(8), 784–789 (2017)

DOI

48
Zidan,M.A., Jeong,Y., Lee,J., Chen, B., Huang,S., Kushner,M.J., Lu,W.D.: A general memristor-based partial differential equation solver. Nat. Electron. 1(7), 411–420 (2018)

DOI

49
Li,C., Hu,M., Li,Y., Jiang, H., Ge,N., Montgomery,E., Zhang,J., Song,W., Dávila, N., Graves,C.E., Li,Z., Strachan, J.P., Lin,P., Wang,Z., Barnell, M., Wu,Q., Williams,R.S., Yang,J.J., Xia,Q.: Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1(1), 52–59 (2018)

DOI

50
LeCun,Y., Bengio, Y., Hinton,G.: Deep learning. Nature 521(7553), 436–444 (2015)

DOI

51
Sainath,T.N., Kingsbury, B., Saon,G., Soltau,H., Mohamed, A.R., Dahl,G., Ramabhadran,B.: Deep convolutional neural networks for large-scale speech tasks. Neural Netw. 64, 39–48 (2015)

DOI

52
Krizhevsky,A., Sutskever, I., Hinton,G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

53
Girshick,R., Donahue, J., Darrell,T., Malik,J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 580–587 (2014)

DOI

54
Sze,V., Chen,Y.H., Yang,T.J., Emer, J.S.: Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017)

DOI

55
Bayat,F.M., Prezioso, M., Chakrabarti,B., Nili,H., Kataeva, I., Strukov,D.: Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits. Nat. Commun. 9(1), 2331 (2018)

DOI

56
Lin,P., Li,C., Wang,Z., Li, Y., Jiang,H., Song,W., Rao,M., Zhuo,Y., Upadhyay, N.K., Barnell,M., Wu,Q., Yang,J.J., Xia,Q.: Three-dimensional memristor circuits as complex neural networks. Nat. Electron. 3(4), 225–232 (2020)

DOI

57
Li,T., Yin,Y., Ma,K., Zhang, S., Liu,M.: Lightweight end-to-end neural network model for automatic heart sound classification. Information (Basel) 12(2), 54 (2021)

DOI

58
Karunaratne,G., Schmuck, M., Le Gallo,M., Cherubini,G., Benini, L., Sebastian,A., Rahimi,A.: Robust high-dimensional memory-augmented neural networks. Nat. Commun. 12(1), 2468 (2021)

DOI

59
Li,H., Chen,W.C., Levy,A., Wang, C.H., Wang,H., Chen,P.H., Wan,W., Wong,H.S.P., Raina, P.: One-shot learning with memory-augmented neural networks using a 64-kbit, 118 GOPS/W RRAM-based non-volatile associative memory. In: Proceedings of 2021 Symposium on VLSI Technology. IEEE, 1–2 (2021)

60
Wu,S., Li,G., Chen,F., Shi, L.: Training and inference with integers in deep neural networks. arXiv preprint arXiv:180204680 (2018)

61
Zhang,Q., Wu,H., Yao,P., Zhang, W., Gao,B., Deng,N., Qian,H.: Sign backpropagation: an on-chip learning algorithm for analog RRAM neuromorphic computing systems. Neural Netw. 108, 217–223 (2018)

DOI

62
Gokmen,T., Onen,M., Haensch,W.: Training deep convolutional neural networks with resistive cross-point devices. Front. Neurosci. 11, 538 (2017)

DOI

63
Lim,S., Bae,J.H., Eum,J.H., Lee, S., Kim,C.H., Kwon,D., Park,B.G., Lee,J.H.: Adaptive learning rule for hardware-based deep neural networks using electronic synapse devices. Neural Comput. Appl. 31(11), 8101–8116 (2019)

DOI

64
Geng,Y., Gao,B., Zhang,Q., Zhang, W., Yao,P., Xi,Y., Lin,Y., Chen,J., Tang, J., Wu,H.: An on-chip layer-wise training method for RRAM based computing-in-memory chips. In: Proceedings of 2021 Design, Automation and Test in Europe Conference and Exhibition (DATE). IEEE, 248–251 (2021)

DOI

65
Jiang,H., Huang,S., Peng,X., Yu, S.: MINT: Mixed-precision RRAM-based IN-memory training architecture. In: Proceedings of 2020 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 1–5 (2020)

DOI

66
Negrov,D., Karandashev, I., Shakirov,V., Matveyev,Y., Dunin- Barkowski, W., Zenkevich,A.: An approximate backpropagation learning rule for memristor based neural networks using synaptic plasticity. Neurocomputing 237, 193–199 (2017)

DOI

67
Lillicrap,T.P., Cownden, D., Tweed,D.B., Akerman,C.J.: Random synaptic feedback weights support error backpropagation for deep learning. Nat. Commun. 7(1), 13276 (2016)

DOI

68
Lu,Y., Li,X., Yan,L., Zhang, T., Yang,Y., Song,Z., HuangR.: Accelerated local training of CNNs by optimized direct feedback alignment based on stochasticity of 4 Mb C-doped Ge2Sb2Te5 PCM chip in 40 nm node. In: Proceedings of 2020 IEEE International Electron Devices Meeting (IEDM). IEEE, 36.33.31–36.33.34 (2020)

DOI

69
Luo,Y., Han,X., Ye,Z., Barnaby, H., Seo,J.S., Yu,S.: Arraylevel programming of 3-bit per cell resistive memory and its application for deep neural network inference. IEEE Trans. Electron Devices 67(11), 4621–4625 (2020)

DOI

70
Chen,J., Pan,W.Q., Li,Y., Kuang, R., He,Y.H., Lin,C.Y., Duan,N., Feng,G.R., Zheng, H.X., Chang,T.C., Sze,S.M., Miao,X.S.: High-precision symmetric weight update of memristor by gate voltage ramping method for convolutional neural network accelerator. IEEE Electron Device Lett. 41(3), 353–356 (2020)

DOI

71
Cai,Y., Tang,T., Xia,L., Li, B., Wang,Y., Yang,H.: Low bitwidth convolutional neural network on RRAM. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(7), 1414–1427 (2020)

DOI

72
Hubara,I., Courbariaux, M., Soudry,D., El-Yaniv,R., Bengio, Y.: Quantized neural networks: training neural networks with low precision weights and activations. J. Mach. Learn. Res. 18(1), 6869–6898 (2017)

73
Qin,Y.F., Kuang,R., Huang,X.D., Li, Y., Chen,J., Miao,X.S.: Design of high robustness BNN inference accelerator based on binary memristors. IEEE Trans. Electron Devices 67(8), 3435–3441 (2020)

DOI

74
Pan,W.Q., Chen,J., Kuang,R., Li, Y., He,Y.H., Feng,G.R., Duan,N., Chang,T.C., Miao, X.S.: Strategies to improve the accuracy of memristor-based convolutional neural networks. IEEE Trans. Electron Devices 67(3), 895–901 (2020)

DOI

75
Xi,Y., Gao,B., Tang,J., Chen, A., Chang,M.F., Hu,X.S., Spiegel, J.V.D., Qian,H., Wu,H.: In-memory learning with analog resistive switching memory: a review and perspective. Proc. IEEE 109(1), 14–42 (2021)

DOI

76
Kim,S.G., Han,J.S., Kim,H., Kim, S.Y., Jang,H.W.: Recent advances in memristive materials for artificial synapses. Adv. Mater. Technol. 3(12), 1800457 (2018)

DOI

77
Chen,J., Lin,C.Y., Li,Y., Qin, C., Lu,K., Wang,J.M., Chen,C.K., He,Y.H., Chang, T.C., Sze,S.M., Miao,X.S.: LiSiO X-based analog memristive synapse for neuromorphic computing. IEEE Electron Device Lett. 40(4), 542–545 (2019)

DOI

78
Yu,S.: Orientation classification by a winner-take-all network with oxide RRAM based synaptic devices. In: Proceedings of 2014 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 1058–1061 (2014)

DOI

79
Jiang,Y., Kang,J., Wang,X.: RRAM-based parallel computing architecture using k-nearest neighbor classification for pattern recognition. Sci. Rep. 7(1), 45233 (2017)

DOI

80
Jeong,Y., Lee,J., Moon,J., Shin, J.H., Lu,W.D.: K-means data clustering with memristor networks. Nano Lett. 18(7), 4447–4453 (2018)

DOI

81
Zhou,H., Chen,J., Wang,Y., Liu, S., Li,Y., Li,Q., Liu,Q., Wang,Z., He, Y., Xu,H.: Energy-efficient memristive Euclidean distance engine for brain-inspired competitive learning. Adv. Intell. Syst. 3, 2100114 (2021)

DOI

82
Choi,S., Shin,J.H., Lee,J., Sheridan, P., Lu,W.D.: Experimental demonstration of feature extraction and dimensionality reduction using memristor networks. Nano Lett. 17(5), 3113–3118 (2017)

DOI

83
Zhou,H., Li,Y., Miao,X.: Low-time-complexity document clustering using memristive dot product engine. Science China. Inf. Sci. 65(2), 122410 (2022)

DOI

84
Milo,V., Anzalone, F., Zambelli,C., Pérez,E., Mahadevaiah, M.K., Ossorio,Ó.G., Olivo,P., Wenger, C., Ielmini,D.: Optimized programming algorithms for multilevel RRAM in hardware neural networks. In: Proceedings of 2021 IEEE International Reliability Physics Symposium (IRPS). IEEE, 1–6 (2021)

DOI

85
Wang,Z., Joshi,S., Savel’ev,S.E., Jiang,H., Midya,R., Lin,P., Hu, M., Ge,N., Strachan,J.P., Li,Z., Wu,Q., Barnell, M., Li,G.L., Xin,H.L., Williams, R.S., Xia,Q., Yang,J.J.: Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16(1), 101–108 (2017)

DOI

86
Chen,P.Y., Peng,X., Yu,S.: NeuroSim+: an integrated device-to-algorithm framework for benchmarking synaptic devices and array architectures. In: Proceedings of 2017 IEEE International Electron Devices Meeting (IEDM). IEEE, 6.1.1–6.1.4 (2017)

DOI

87
Hopfield,J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79(8), 2554–2558 (1982)

DOI

88
Cai,F., Kumar,S., Van Vaerenbergh,T., Sheng,X., Liu,R., Li,C., Liu, Z., Foltin,M., Yu,S., Xia,Q., Yang,J.J., Beausoleil, R., Lu,W.D., Strachan,J.P.: Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks. Nat. Electron. 3(7), 409–418 (2020)

DOI

89
Yang,K., Duan,Q., Wang,Y., Zhang, T., Yang,Y., Huang,R.: Transiently chaotic simulated annealing based on intrinsic nonlinearity of memristors for efficient solution of optimization problems. Sci Adv 6(33), eaba9901 (2020)

DOI

90
Mahmoodi,M.R., Prezioso, M., Strukov,D.B.: Versatile stochastic dot product circuits based on nonvolatile memories for high performance neurocomputing and neurooptimization. Nat. Commun. 10(1), 5113 (2019)

DOI

91
Dalgaty,T., Castellani, N., Turck,C., Harabi,K.E., Querlioz, D., Vianello,E.: In situ learning using intrinsic memristor variability via Markov chain Monte Carlo sampling. Nat. Electron. 4(2), 151–161 (2021)

DOI

92
Chen,L., Aihara, K.: Chaotic simulated annealing by a neural network model with transient chaos. Neural Netw. 8(6), 915–930 (1995)

DOI

93
Lu,J., Wu,Z., Zhang,X., Wei, J., Fang,Y., Shi,T., Liu,Q., Wu,F., Liu, M.: Quantitatively evaluating the effect of read noise in memristive Hopfield network on solving traveling salesman problem. IEEE Electron Device Lett. 41(11), 1688–1691 (2020)

DOI

94
Fahimi,Z., Mahmoodi, M.R., Nili,H., Polishchuk,V., Strukov, D.B.: Combinatorial optimization by weight annealing in memristive hopfield networks. Sci. Rep. 11(1), 16383 (2021)

DOI

95
Ovaska,S.J., VanLandingham, H.F., Kamiya,A.: Fusion of soft computing and hard computing in industrial applications: an overview. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 32(2), 72–79 (2002)

DOI

96
Baboulin,M., Buttari, A., Dongarra,J., Kurzak,J., Langou, J., Langou,J., Luszczek,P., Tomov,S.: Accelerating scientific computations with mixed precision algorithms. Comput. Phys. Commun. 180(12), 2526–2533 (2009)

DOI

97
Sun,Z., Huang,R.: Time complexity of in memory matrix vector multiplication. IEEE Trans. Circuits Syst. II Express Briefs 68(8), 2785–2789 (2021)

DOI

98
Feinberg,B., Vengalam, U.K.R., Whitehair,N., Wang,S., Ipek,E.: Enabling scientific computing on memristive accelerators. In: Proceedings of 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA). IEEE, 367–382 (2018)

DOI

99
Le Gallo,M., Sebastian, A., Mathis,R., Manica,M., Giefers, H., Tuma,T., Bekas,C., Curioni, A., Eleftheriou,E.: Mixed-precision in-memory computing. Nat. Electron. 1(4), 246–253 (2018)

DOI

100
Sun,Z., Pedretti, G., Ambrosi,E., Bricalli,A., Wang,W., Ielmini,D.: Solving matrix equations in one step with cross-point resistive arrays. Proc. Natl. Acad. Sci. U.S.A. 116(10), 4123–4128 (2019)

DOI

101
Song,T., Chen,X., Han,Y.: Eliminating iterations of iterative methods: solving large-scale sparse linear system in O(1) with RRAM-based in-memory accelerator. In: Proceedings of the 2021 on Great Lakes Symposium on VLSI. ACM, 71–76 (2021)

DOI

102
Feng,Y., Zhan,X., Chen,J.: Flash memory based computing-in-memory to solve time-dependent partial differential equations. In: Proceedings of 2020 IEEE Silicon Nanoelectronics Workshop (SNW). IEEE, 27–28 (2020)

DOI

103
Kalantzis,V., Gupta,A., Horesh,L., Nowicki, T., Squillante,M. S., Wu,C. W., Gokmen, T., Avron,H.: Solving sparse linear systems with approximate inverse preconditioners on analog devices. arXiv preprint arXiv:210706973 (2021)

DOI

104
Sun,Z., Pedretti, G., Mannocci,P., Ambrosi,E., Bricalli, A., Ielmini,D.: Time complexity of in-memory solution of linear systems. IEEE Trans. Electron Devices 67(7), 2945–2951 (2020)

DOI

105
Sun,Z., Pedretti, G., Ambrosi,E., Bricalli,A., Ielmini, D.: In-memory eigenvector computation in time O(1). Adv. Intell. Syst. 2(8), 2000042 (2020)

DOI

106
Sun,Z., Ambrosi, E., Pedretti,G., Bricalli,A., Ielmini, D.: Inmemory PageRank accelerator with a cross-point array of resistive memories. IEEE Trans. Electron Devices 67(4), 1466–1470 (2020)

DOI

107
Sun,Z., Pedretti, G., Bricalli,A., Ielmini,D.: One-step regression and classification with cross-point resistive memory arrays. Sci. Adv. 6(5), eaay2378 (2020)

DOI

108
Buluc,A., Gilbert, J. R.: Challenges and advances in parallel sparse matrix-matrix multiplication. In: Proceedings of 2008 37th International Conference on Parallel Processing. IEEE, 503–510 (2008)

DOI

109
Borštnik,U., VandeVondele, J., Weber,V., Hutter,J.: Sparse matrix multiplication: the distributed block-compressed sparse row library. Parallel Comput. 40(5–6), 47–58 (2014)

DOI

110
Pitas,I.: Digital Image Processing Algorithms and Applications. Wiley, New York (2000)

111
Baraniuk,R.G.: Compressive sensing. IEEE Signal Process. Mag. 24(4), 118–121 (2007)

DOI

112
Le Gallo,M., Sebastian, A., Cherubini,G., Giefers,H., Eleftheriou, E.: Compressed sensing recovery using computational memory. In: Proceedings of 2017 IEEE International Electron Devices Meeting (IEDM). IEEE, 28.23.21–28.23.24 (2017)

DOI

113
Canny,J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

DOI

114
Huo,Q., Song,R., Lei,D., Luo, Q., Wu,Z., Wu,Z., Zhao,X., Zhang,F., Li, L., Liu,M.: Demonstration of 3D convolution kernel function based on 8-layer 3D vertical resistive random access memory. IEEE Electron Device Lett. 41(3), 497–500 (2020)

DOI

115
Halawani,Y., Mohammad, B., Al-Qutayri,M., Al-Sarawi,S.F.: Memristor-based hardware accelerator for image compression. IEEE Trans. VLSI Syst. 26(12), 2749–2758 (2018)

DOI

116
Zhang,B., Uysal,N., Ewetz,R.: Computational restructuring: rethinking image processing using memristor crossbar arrays. In: Proceedings of 2020 Design, Automation and Test in Europe Conference and Exhibition (DATE). IEEE, 1594–1597 (2020)

DOI

117
Zhang,W., Gao,B., Yao,P., Tang, J., Qian,H., Wu,H.: Array-level boosting method with spatial extended allocation to improve the accuracy of memristor based computing-in-memory chips. Science China. Inf. Sci. 64(6), 1–9 (2021)

DOI

118
Oppenheim,A.V., Schafer, R.W., Buck,J.R.: Discrete-Time Signal Processing. Pearson Education India, New Jersey (1999)

119
Liu,S., Ren,A., Wang,Y., Varshney, P. K.: Ultra-fast robust compressive sensing based on memristor crossbars. In: Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 1133–1137 (2017)

DOI

120
Qian,F., Gong,Y., Huang,G., Ahi, K., Anwar,M., Wang,L.: A memristor-based compressive sensing architecture. In: Proceedings of 2016 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH). IEEE, 109–114 (2016)

121
Zhao,H., Liu,Z., Tang,J., Gao, B., Zhang,Y., Qian,H., Wu,H.: Memristor-based signal processing for edge computing. Tsinghua Sci. Technol. 27(3), 455–471 (2022)

DOI

122
Zhu,R., Tang,Z., Ye,S., Huang, Q., Guo,L., Chang,S.: Memristor-based image enhancement: high efficiency and robustness. IEEE Trans. Electron Devices 68(2), 602–609 (2021)

DOI

123
Ran,H., Wen,S., Wang,S., Cao, Y., Zhou,P., Huang,T.: Memristor-based edge computing of ShuffleNetV2 for image classification. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 40(8), 1701–1710 (2021)

DOI

124
Hong,Q., Li,Y., Wang,X.: Memristive continuous Hopfield neural network circuit for image restoration. Neural Comput. Appl. 32(12), 8175–8185 (2020)

DOI

125
Mennel,L., Symonowicz, J., Wachter,S., Polyushkin,D.K., Molina-Mendoza, A.J., Mueller,T.: Ultrafast machine vision with 2D material neural network image sensors. Nature 579(7797), 62–66 (2020)

DOI

126
Zhou,F., Zhou,Z., Chen,J., Choy, T.H., Wang,J., Zhang,N., Lin,Z., Yu,S., Kang, J., Wong,H.P., Chai,Y.: Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 14(8), 776–782 (2019)

DOI

127
Sun,L., Zhang,Y., Hwang,G., Jiang, J., Kim,D., Eshete,Y.A., Zhao,R., Yang,H.: Synaptic computation enabled by joule heating of single-layered semiconductors for sound localization. Nano Lett. 18(5), 3229–3234 (2018)

DOI

128
Iwata,T., Ono,K., Yoshikawa,T., Sawada,K.: Gas discrimination based on single-device extraction of transient sensor response by a MetalOxide memristor toward olfactory sensor array. In: Proceedings of 2019 IEEE Sensors. IEEE, 1–4 (2019)

DOI

129
Zhou,F., Chai,Y.: Near-sensor and in-sensor computing. Nat. Electron. 3(11), 664–671 (2020)

DOI

130
Chai,Y.: In-sensor computing for machine vision. Nature 579, 32–33 (2020)

DOI

131
Tong,L., Peng,Z., Lin,R., Li, Z., Wang,Y., Huang,X., Xue,K.H., Xu,H., Liu, F., Xia,H., Wang,P., Xu,M., Xiong,W., Hu, W., Xu,J., Zhang,X., Ye,L., Miao,X.: 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware. Science 373(6561), 1353–1358 (2021)

DOI

132
Wang,C., Liang,S.J., Wang,C.Y., Yang, Z.Z., Ge,Y., Pan,C., Shen,X., Wei,W., Zhao, Y., Zhang,Z., Cheng,B., Zhang,C., Miao,F.: Scalable massively parallel computing using continuous-time data representation in nanoscale crossbar array. Nat. Nanotechnol. 16(10), 1079–1085 (2021)

DOI

133
Ankit,A., Hajj,I.E., Chalamalasetti,S.R., Ndu,G., Foltin, M., Williams,R. S., Faraboschi,P., Hwu,W. W., Strachan,J.P., Roy,K.: PUMA: a programmable ultra-efficient memristor-based accelerator for machine learning inference. In: Proceedings of 24th International Conference on Architectural Support for Programming Languages and Operating Systems. ACM, 715–731 (2019)

DOI

134
Christensen,D.V., Dittmann, R., Linares-Barranco,B., Sebastian,A., Gallo,M. L., Redaelli, A., Slesazeck,S., Mikolajick,T., Spiga,S., Menzel,S.: 2021 roadmap on neuromorphic computing and engineering. arXiv preprint arXiv: 210505956 (2021)

135
Upadhyay,N.K., Jiang,H., Wang,Z., Asapu, S., Xia,Q., Joshua,Y.J.: Emerging memory devices for neuromorphic computing. Adv. Mater. Technol. 4(4), 1800589 (2019)

DOI

136
Sung,C., Hwang,H., Yoo,I.K.: Perspective: a review on memristive hardware for neuromorphic computation. J. Appl. Phys. 124(15), 151903 (2018)

DOI

137
Zhang,W., Gao,B., Tang,J., Yao, P., Yu,S., Chang,M.F., Yoo,H.J., Qian,H., Wu, H.: Neuro-inspired computing chips. Nat. Electron. 3(7), 371–382 (2020)

DOI

138
Zhou,Y., Xu,N., Gao,B., Zhuge, F., Tang,Z., Deng,X., Li,Y., He,Y., Miao, X.: Complementary memtransistor-based multilayer neural networks for online supervised learning through (anti-) spike-timing-dependent plasticity. IEEE Trans. Neural Netw. Learn. Syst. (2021)

DOI

139
Pedretti,G., Milo,V., Ambrogio,S., Carboni, R., Bianchi,S., Calderoni,A., Ramaswamy, N., Spinelli,A.S., Ielmini,D.: Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity. Sci. Rep. 7(1), 5288 (2017)

DOI

140
Lu,Y.F., Li,Y., Li,H., Wan, T.Q., Huang,X., He,Y.H., Miao,X.: Low-power artificial neurons based on Ag/TiN/HfAlOx/Pt threshold switching memristor for neuromorphic computing. IEEE Electron Device Lett. 41(8), 1245–1248 (2020)

DOI

141
Wan,T.Q., Lu,Y.F., Yuan,J.H., Li, H.Y., Li,Y., Huang,X.D., Xue,K.H., Miao,X.S.: 12.7 mA/cm2 on-current density and high uniformity realized in AgGeSe/Al2O3 selectors. IEEE Electron Device Lett. 42(4), 613–616 (2021)

DOI

142
Li,X., Tang,J., Zhang,Q., Gao, B., Yang,J.J., Song,S., Wu,W., Zhang,W., Yao, P., Deng,N., Deng,L., Xie,Y., Qian,H., Wu, H.: Power-efficient neural network with artificial dendrites. Nat. Nanotechnol. 15(9), 776–782 (2020)

DOI

143
He,Y., Jiang,S., Chen,C., Wan, C., Shi,Y., Wan,Q.: Electrolyte- gated neuromorphic transistors for brain-like dynamic computing. J. Appl. Phys. 130(19), 190904 (2021)

DOI

144
Roy,K., Jaiswal, A., Panda,P.: Towards spike-based machine intelligence with neuromorphic computing. Nature 575(7784), 607–617 (2019)

DOI

145
Chakraborty,I., Jaiswal, A., Saha,A., Gupta,S., Roy,K.: Pathways to efficient neuromorphic computing with non-volatile memory technologies. Appl. Phys. Rev. 7(2), 021308 (2020)

DOI

Outlines

/