Toward memristive in-memory computing: principles and applications

Han Bao, Houji Zhou, Jiancong Li, Huaizhi Pei, Jing Tian, Ling Yang, Shengguang Ren, Shaoqin Tong, Yi Li, Yuhui He, Jia Chen, Yimao Cai, Huaqiang Wu, Qi Liu, Qing Wan, Xiangshui Miao

PDF(3722 KB)
PDF(3722 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (2) : 23. DOI: 10.1007/s12200-022-00025-4
REVIEW ARTICLE
REVIEW ARTICLE

Toward memristive in-memory computing: principles and applications

Author information +
History +

Abstract

With the rapid growth of computer science and big data, the traditional von Neumann architecture suffers the aggravating data communication costs due to the separated structure of the processing units and memories. Memristive in-memory computing paradigm is considered as a prominent candidate to address these issues, and plentiful applications have been demonstrated and verified. These applications can be broadly categorized into two major types: soft computing that can tolerant uncertain and imprecise results, and hard computing that emphasizes explicit and precise numerical results for each task, leading to different requirements on the computational accuracies and the corresponding hardware solutions. In this review, we conduct a thorough survey of the recent advances of memristive in-memory computing applications, both on the soft computing type that focuses on artificial neural networks and other machine learning algorithms, and the hard computing type that includes scientific computing and digital image processing. At the end of the review, we discuss the remaining challenges and future opportunities of memristive in-memory computing in the incoming Artificial Intelligence of Things era.

Graphical abstract

Keywords

Memristor / In-memory computing / Matrix–vector multiplication / Machine learning / Scientific computing / Digital image processing

Cite this article

Download citation ▾
Han Bao, Houji Zhou, Jiancong Li, Huaizhi Pei, Jing Tian, Ling Yang, Shengguang Ren, Shaoqin Tong, Yi Li, Yuhui He, Jia Chen, Yimao Cai, Huaqiang Wu, Qi Liu, Qing Wan, Xiangshui Miao. Toward memristive in-memory computing: principles and applications. Front. Optoelectron., 2022, 15(2): 23 https://doi.org/10.1007/s12200-022-00025-4

References

[1]
Jordan,M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)
CrossRef Google scholar
[2]
Kuznetsova,A., Rom,H., Alldrin,N., Uijlings, J., Krasin,I., Pont-Tuset,J., Kamali, S., Popov,S., Malloci,M., Kolesnikov, A., Duerig,T., Ferrari,V.: The open images dataset v4. Int. J. Comput. Vis. 128(7), 1956–1981 (2020)
CrossRef Google scholar
[3]
Deng,J., Dong,W., Socher,R., Li, L.J., Li,K., Fei-Fei,L.: Imagenet: a large-scale hierarchical image database. In: Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 248–255 (2009)
CrossRef Google scholar
[4]
Simonyan,K., Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556 (2014)
[5]
He,K., Zhang,X., Ren,S., Sun, J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 770–778 (2016)
CrossRef Google scholar
[6]
Keckler,S.W., Dally,W.J., Khailany,B., Garland, M., Glasco,D.: GPUs and the future of parallel computing. IEEE Micro 31(5), 7–17 (2011)
CrossRef Google scholar
[7]
Owens,J.D., Houston, M., Luebke,D., Green,S., Stone,J.E., Phillips,J.C.: GPU computing. Proc. IEEE 96(5), 879–899 (2008)
CrossRef Google scholar
[8]
Mutlu,O., Ghose,S., Gómez-Luna,J., Ausavarungnirun,R.: Processing data where it makes sense: enabling in-memory computation. Microprocess. Microsyst. 67, 28–41 (2019)
CrossRef Google scholar
[9]
Chua,L.O.: How we predicted the memristor. Nat. Electron. 1(5), 322 (2018)
CrossRef Google scholar
[10]
Williams,R.S.: How we found the missing memristor. In: Tetzlaff, R. (ed.) Memristors and Memristive Systems, pp. 3–16. Springer, New York (2014)
CrossRef Google scholar
[11]
Chua,L.: Memristor—the missing circuit element. IEEE Trans Circuit Theory 18(5), 507–519 (1971)
CrossRef Google scholar
[12]
Strukov,D.B., Snider, G.S., Stewart,D.R., Williams,R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)
CrossRef Google scholar
[13]
Zidan,M.A., Strachan, J.P., Lu,W.D.: The future of electronics based on memristive systems. Nat. Electron. 1(1), 22–29 (2018)
CrossRef Google scholar
[14]
Lee,J., Lu,W.D.: On-demand reconfiguration of nanomaterials: when electronics meets ionics. Adv. Mater. 30(1), 1702770 (2018)
CrossRef Google scholar
[15]
Sun,W., Gao,B., Chi,M., Xia, Q., Yang,J.J., Qian,H., Wu,H.: Understanding memristive switching via in situ characterization and device modeling. Nat. Commun. 10(1), 3453 (2019)
CrossRef Google scholar
[16]
Cheng,L., Li,Y., Yin,K.S., Hu, S.Y., Su,Y.T., Jin,M.M., Wang,Z.R., Chang,T.C., Miao, X.S.: Functional demonstration of a memristive arithmetic logic unit (MemALU) for in-memory computing. Adv. Func. Mater. 29(49), 1905660 (2019)
CrossRef Google scholar
[17]
Yang,L., Cheng,L., Li,Y., Li, H., Li,J., Chang,T.C., Miao,X.: Cryptographic key generation and in situ encryption in one-transistor-one-resistor memristors for hardware security. Adv. Electron. Mater. 7(5), 2001182 (2021)
CrossRef Google scholar
[18]
Karunaratne,G., Le Gallo, M., Cherubini,G., Benini,L., Rahimi, A., Sebastian,A.: In-memory hyperdimensional computing. Nat. Electron. 3(6), 327–337 (2020)
CrossRef Google scholar
[19]
Junsangsri,P., Lombardi, F.: A memristor-based TCAM (ternary content addressable memory) cell: design and evaluation. In: Proceedings of the Great Lakes Symposium on VLSI. ACM, 311–314 (2012)
CrossRef Google scholar
[20]
Graves,C.E., Li,C., Sheng,X., Miller, D., Ignowski,J., Kiyama,L., Strachan, J.P.: In-memory computing with memristor content addressable memories for pattern matching. Adv. Mater. 32(37), e2003437 (2020)
CrossRef Google scholar
[21]
Hu,M., Graves, C.E., Li,C., Li,Y., Ge,N., Montgomery,E., Davila,N., Jiang,H., Williams,R.S., Yang,J.J., Xia,Q., Strachan,J.P.: Memristor-based analog computation and neural network classification with a dot product engine. Adv. Mater. 30(9), 1705914 (2018)
CrossRef Google scholar
[22]
Yao,P., Wu,H., Gao,B., Eryilmaz, S.B., Huang,X., Zhang,W., Zhang,Q., Deng,N., Shi, L., Wong,H.P., Qian,H.: Face classification using electronic synapses. Nat. Commun. 8(1), 15199 (2017)
CrossRef Google scholar
[23]
Amirsoleimani,A., Alibart, F., Yon,V., Xu,J., Pazhouhandeh, M.R., Ecoffey,S., Beilliard,Y., Genov,R., Drouin,D.: In-memory vector-matrix multiplication in monolithic complementary metal–oxide–semiconductor-memristor integrated circuits: design choices, challenges, and perspectives. Adv. Intell. Syst. 2(11), 2000115 (2020)
CrossRef Google scholar
[24]
Xia,Q., Yang,J.J.: Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18(4), 309–323 (2019)
CrossRef Google scholar
[25]
Yan,B., Li,B., Qiao,X., Xue, C.X., Chang,M.F., Chen,Y., Li,H.: Resistive memory-based in-memory computing: from device and large-scale integration system perspectives. Adv. Intell. Syst. 1(7), 1900068 (2019)
CrossRef Google scholar
[26]
Zhang,T., Yang,K., Xu,X., Cai, Y., Yang,Y., Huang,R.: Memristive devices and networks for brain-inspired computing. Phys. Status Solidi (RRL) Rapid Res. Lett. 13(8), 1900029 (2019)
CrossRef Google scholar
[27]
Shi,T., Wang,R., Wu,Z., Sun, Y., An,J., Liu,Q.: A review of resistive switching devices: performance improvement, characterization, and applications. Small Struct. 2(4), 2000109 (2021)
CrossRef Google scholar
[28]
Hung,J.M., Jhang,C.J., Wu,P.C., Chiu, Y.C., Chang,M.F.: Challenges and trends of nonvolatile in-memory-computation circuits for AI edge devices. IEEE Trans. Electron Devices 67(4), 1444–1453 (2020)
CrossRef Google scholar
[29]
Guo,X., Bayat,F.M., Bavandpour,M., Klachko,M., Mahmoodi, M., Prezioso,M., Likharev,K., Strukov D.: Fast, energy-efficient, robust, and reproducible mixed-signal neuromorphic classifier based on embedded NOR flash memory technology. In: Proceedings of 2017 IEEE International Electron Devices Meeting (IEDM). IEEE, 6.5.1–6.5.4 (2017)
CrossRef Google scholar
[30]
Ambrogio,S., Narayanan, P., Tsai,H., Shelby,R.M., Boybat, I., di Nolfo,C., Sidler,S., Giordano, M., Bodini,M., Farinha,N.C.P., Killeen, B., Cheng,C., Jaoudi,Y., Burr,G.W.: Equivalent-accuracy accelerated neural-network training using analogue memory. Nature 558(7708), 60–67 (2018)
CrossRef Google scholar
[31]
Ni,K., Yin,X., Laguna,A.F., Joshi, S., Duenkel,S., Trentzsch,M., Müller, J., Beyer,S., Niemier,M., Hu,X.S.: Ferroelectric ternary content-addressable memory for one-shot learning. Nat. Electron. 2(11), 521–529 (2019)
CrossRef Google scholar
[32]
Jung,S., Lee,H., Myung,S., Kim, H., Yoon,S.K., Kwon,S.W., Ju,Y., Kim,M., Yi, W., Han,S., Kwon,B., Seo,B., Lee,K., Koh, G.H., Lee,K., Song,Y., Choi,C., Ham,D., Kim, S.J.: A crossbar array of magnetoresistive memory devices for in-memory computing. Nature 601(7892), 211–216 (2022)
CrossRef Google scholar
[33]
Chen,J., Li,J., Li,Y., Miao, X.: Multiply accumulate operations in memristor crossbar arrays for analog computing. J. Semicond. 42(1), 013104 (2021)
CrossRef Google scholar
[34]
Sebastian,A., Le Gallo, M., Khaddam-Aljameh,R., Eleftheriou,E.: Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15(7), 529–544 (2020)
CrossRef Google scholar
[35]
Qin,Y.F., Bao,H., Wang,F., Chen, J., Li,Y., Miao,X.S.: Recent progress on memristive convolutional neural networks for edge intelligence. Adv. Intell. Syst. 2(11), 2000114 (2020)
CrossRef Google scholar
[36]
Ibrahim,D.: An overview of soft computing. Procedia Comput. Sci. 102, 34–38 (2016)
CrossRef Google scholar
[37]
Yin,S., Sun,X., Yu,S., Seo, J.: High-throughput in-memory computing for binary deep neural networks with monolithically integrated RRAM and 90-nm CMOS. IEEE Trans. Electron Devices 67(10), 4185–4192 (2020)
CrossRef Google scholar
[38]
Yu,S., Li,Z., Chen,P.Y., Wu, H., Gao,B., Wang,D., Wu,W., QianH.: Binary neural network with 16 Mb RRAM macro chip for classification and online training. In: Proceedings of 2016 IEEE International Electron Devices Meeting (IEDM). IEEE, 16.2.1–16.2.4 (2016)
CrossRef Google scholar
[39]
Xue,C.X., Chiu,Y.C., Liu,T.W., Huang, T.Y., Liu,J.S., Chang,T.W., Kao,H.Y., Wang,J.H., Wei, S.Y., Lee,C.Y., Huang,S.P., Hung,J.M., Teng,S.H., Wei, W.C., Chen,Y.R., Hsu,T.H., Chen,Y.K., Lo,Y.C., Wen, T.H., Lo,C.C., Liu,R.S., Hsieh,C.C., Tang,K.T., Ho, M.S., Su,C.Y., Chou,C.C., Chih,Y.D., Chang,M.F.: A CMOS-integrated compute-in-memory macro based on resistive random-access memory for AI edge devices. Nat. Electron. 4(1), 81–90 (2021)
CrossRef Google scholar
[40]
Kim,H., Mahmoodi, M.R., Nili,H., Strukov,D.B.: 4K-memristor analog-grade passive crossbar circuit. Nat. Commun. 12(1), 5198 (2021)
CrossRef Google scholar
[41]
Yao,P., Wu,H., Gao,B., Tang, J., Zhang,Q., Zhang,W., Yang,J.J., Qian,H.: Fully hardware-implemented memristor convolutional neural network. Nature 577(7792), 641–646 (2020)
CrossRef Google scholar
[42]
Wang,Z., Li,C., Lin,P., Rao, M., Nie,Y., Song,W., Qiu,Q., Li,Y., Yan, P., Strachan,J.P., Ge,N., McDonald, N., Wu,Q., Hu,M., Wu,H., Williams,R.S., Xia,Q., Yang,J.J.: In situ training of feed-forward and recurrent convolutional memristor networks. Nat. Mach. Intell. 1(9), 434–442 (2019)
CrossRef Google scholar
[43]
Wang,Z., Li,C., Song,W., Rao, M., Belkin,D., Li,Y., Yan,P., Jiang,H., Lin, P., Hu,M., Strachan,J.P., Ge,N., Barnell,M., Wu, Q., Barto,A.G., Qiu,Q., Williams, R.S., Xia,Q., Yang,J.J.: Reinforcement learning with analogue memristor arrays. Nat. Electron. 2(3), 115–124 (2019)
CrossRef Google scholar
[44]
Li,C., Wang,Z., Rao,M., Belkin, D., Song,W., Jiang,H., Yan,P., Li,Y., Lin, P., Hu,M., Ge,N., Strachan, J.P., Barnell,M., Wu,Q., Williams, R.S., Yang,J.J., Xia,Q.: Long short-term memory networks in memristor crossbar arrays. Nat. Mach. Intell. 1(1), 49–57 (2019)
CrossRef Google scholar
[45]
Li,C., Belkin, D., Li,Y., Yan,P., Hu,M., Ge,N., Jiang, H., Montgomery,E., Lin,P., Wang,Z., Song,W., Strachan, J.P., Barnell,M., Wu,Q., Williams, R.S., Yang,J.J., Xia,Q.: Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nat. Commun. 9(1), 2385 (2018)
CrossRef Google scholar
[46]
Cai,F., Correll, J.M., Lee,S.H., Lim,Y., Bothra, V., Zhang,Z., Flynn,M.P., Lu,W.D.: A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations. Nat. Electron. 2(7), 290–299 (2019)
CrossRef Google scholar
[47]
Sheridan,P.M., Cai,F., Du,C., Ma, W., Zhang,Z., Lu,W.D.: Sparse coding with memristor networks. Nat. Nanotechnol. 12(8), 784–789 (2017)
CrossRef Google scholar
[48]
Zidan,M.A., Jeong,Y., Lee,J., Chen, B., Huang,S., Kushner,M.J., Lu,W.D.: A general memristor-based partial differential equation solver. Nat. Electron. 1(7), 411–420 (2018)
CrossRef Google scholar
[49]
Li,C., Hu,M., Li,Y., Jiang, H., Ge,N., Montgomery,E., Zhang,J., Song,W., Dávila, N., Graves,C.E., Li,Z., Strachan, J.P., Lin,P., Wang,Z., Barnell, M., Wu,Q., Williams,R.S., Yang,J.J., Xia,Q.: Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1(1), 52–59 (2018)
CrossRef Google scholar
[50]
LeCun,Y., Bengio, Y., Hinton,G.: Deep learning. Nature 521(7553), 436–444 (2015)
CrossRef Google scholar
[51]
Sainath,T.N., Kingsbury, B., Saon,G., Soltau,H., Mohamed, A.R., Dahl,G., Ramabhadran,B.: Deep convolutional neural networks for large-scale speech tasks. Neural Netw. 64, 39–48 (2015)
CrossRef Google scholar
[52]
Krizhevsky,A., Sutskever, I., Hinton,G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)
[53]
Girshick,R., Donahue, J., Darrell,T., Malik,J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 580–587 (2014)
CrossRef Google scholar
[54]
Sze,V., Chen,Y.H., Yang,T.J., Emer, J.S.: Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017)
CrossRef Google scholar
[55]
Bayat,F.M., Prezioso, M., Chakrabarti,B., Nili,H., Kataeva, I., Strukov,D.: Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits. Nat. Commun. 9(1), 2331 (2018)
CrossRef Google scholar
[56]
Lin,P., Li,C., Wang,Z., Li, Y., Jiang,H., Song,W., Rao,M., Zhuo,Y., Upadhyay, N.K., Barnell,M., Wu,Q., Yang,J.J., Xia,Q.: Three-dimensional memristor circuits as complex neural networks. Nat. Electron. 3(4), 225–232 (2020)
CrossRef Google scholar
[57]
Li,T., Yin,Y., Ma,K., Zhang, S., Liu,M.: Lightweight end-to-end neural network model for automatic heart sound classification. Information (Basel) 12(2), 54 (2021)
CrossRef Google scholar
[58]
Karunaratne,G., Schmuck, M., Le Gallo,M., Cherubini,G., Benini, L., Sebastian,A., Rahimi,A.: Robust high-dimensional memory-augmented neural networks. Nat. Commun. 12(1), 2468 (2021)
CrossRef Google scholar
[59]
Li,H., Chen,W.C., Levy,A., Wang, C.H., Wang,H., Chen,P.H., Wan,W., Wong,H.S.P., Raina, P.: One-shot learning with memory-augmented neural networks using a 64-kbit, 118 GOPS/W RRAM-based non-volatile associative memory. In: Proceedings of 2021 Symposium on VLSI Technology. IEEE, 1–2 (2021)
[60]
Wu,S., Li,G., Chen,F., Shi, L.: Training and inference with integers in deep neural networks. arXiv preprint arXiv:180204680 (2018)
[61]
Zhang,Q., Wu,H., Yao,P., Zhang, W., Gao,B., Deng,N., Qian,H.: Sign backpropagation: an on-chip learning algorithm for analog RRAM neuromorphic computing systems. Neural Netw. 108, 217–223 (2018)
CrossRef Google scholar
[62]
Gokmen,T., Onen,M., Haensch,W.: Training deep convolutional neural networks with resistive cross-point devices. Front. Neurosci. 11, 538 (2017)
CrossRef Google scholar
[63]
Lim,S., Bae,J.H., Eum,J.H., Lee, S., Kim,C.H., Kwon,D., Park,B.G., Lee,J.H.: Adaptive learning rule for hardware-based deep neural networks using electronic synapse devices. Neural Comput. Appl. 31(11), 8101–8116 (2019)
CrossRef Google scholar
[64]
Geng,Y., Gao,B., Zhang,Q., Zhang, W., Yao,P., Xi,Y., Lin,Y., Chen,J., Tang, J., Wu,H.: An on-chip layer-wise training method for RRAM based computing-in-memory chips. In: Proceedings of 2021 Design, Automation and Test in Europe Conference and Exhibition (DATE). IEEE, 248–251 (2021)
CrossRef Google scholar
[65]
Jiang,H., Huang,S., Peng,X., Yu, S.: MINT: Mixed-precision RRAM-based IN-memory training architecture. In: Proceedings of 2020 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 1–5 (2020)
CrossRef Google scholar
[66]
Negrov,D., Karandashev, I., Shakirov,V., Matveyev,Y., Dunin- Barkowski, W., Zenkevich,A.: An approximate backpropagation learning rule for memristor based neural networks using synaptic plasticity. Neurocomputing 237, 193–199 (2017)
CrossRef Google scholar
[67]
Lillicrap,T.P., Cownden, D., Tweed,D.B., Akerman,C.J.: Random synaptic feedback weights support error backpropagation for deep learning. Nat. Commun. 7(1), 13276 (2016)
CrossRef Google scholar
[68]
Lu,Y., Li,X., Yan,L., Zhang, T., Yang,Y., Song,Z., HuangR.: Accelerated local training of CNNs by optimized direct feedback alignment based on stochasticity of 4 Mb C-doped Ge2Sb2Te5 PCM chip in 40 nm node. In: Proceedings of 2020 IEEE International Electron Devices Meeting (IEDM). IEEE, 36.33.31–36.33.34 (2020)
CrossRef Google scholar
[69]
Luo,Y., Han,X., Ye,Z., Barnaby, H., Seo,J.S., Yu,S.: Arraylevel programming of 3-bit per cell resistive memory and its application for deep neural network inference. IEEE Trans. Electron Devices 67(11), 4621–4625 (2020)
CrossRef Google scholar
[70]
Chen,J., Pan,W.Q., Li,Y., Kuang, R., He,Y.H., Lin,C.Y., Duan,N., Feng,G.R., Zheng, H.X., Chang,T.C., Sze,S.M., Miao,X.S.: High-precision symmetric weight update of memristor by gate voltage ramping method for convolutional neural network accelerator. IEEE Electron Device Lett. 41(3), 353–356 (2020)
CrossRef Google scholar
[71]
Cai,Y., Tang,T., Xia,L., Li, B., Wang,Y., Yang,H.: Low bitwidth convolutional neural network on RRAM. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(7), 1414–1427 (2020)
CrossRef Google scholar
[72]
Hubara,I., Courbariaux, M., Soudry,D., El-Yaniv,R., Bengio, Y.: Quantized neural networks: training neural networks with low precision weights and activations. J. Mach. Learn. Res. 18(1), 6869–6898 (2017)
[73]
Qin,Y.F., Kuang,R., Huang,X.D., Li, Y., Chen,J., Miao,X.S.: Design of high robustness BNN inference accelerator based on binary memristors. IEEE Trans. Electron Devices 67(8), 3435–3441 (2020)
CrossRef Google scholar
[74]
Pan,W.Q., Chen,J., Kuang,R., Li, Y., He,Y.H., Feng,G.R., Duan,N., Chang,T.C., Miao, X.S.: Strategies to improve the accuracy of memristor-based convolutional neural networks. IEEE Trans. Electron Devices 67(3), 895–901 (2020)
CrossRef Google scholar
[75]
Xi,Y., Gao,B., Tang,J., Chen, A., Chang,M.F., Hu,X.S., Spiegel, J.V.D., Qian,H., Wu,H.: In-memory learning with analog resistive switching memory: a review and perspective. Proc. IEEE 109(1), 14–42 (2021)
CrossRef Google scholar
[76]
Kim,S.G., Han,J.S., Kim,H., Kim, S.Y., Jang,H.W.: Recent advances in memristive materials for artificial synapses. Adv. Mater. Technol. 3(12), 1800457 (2018)
CrossRef Google scholar
[77]
Chen,J., Lin,C.Y., Li,Y., Qin, C., Lu,K., Wang,J.M., Chen,C.K., He,Y.H., Chang, T.C., Sze,S.M., Miao,X.S.: LiSiO X-based analog memristive synapse for neuromorphic computing. IEEE Electron Device Lett. 40(4), 542–545 (2019)
CrossRef Google scholar
[78]
Yu,S.: Orientation classification by a winner-take-all network with oxide RRAM based synaptic devices. In: Proceedings of 2014 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 1058–1061 (2014)
CrossRef Google scholar
[79]
Jiang,Y., Kang,J., Wang,X.: RRAM-based parallel computing architecture using k-nearest neighbor classification for pattern recognition. Sci. Rep. 7(1), 45233 (2017)
CrossRef Google scholar
[80]
Jeong,Y., Lee,J., Moon,J., Shin, J.H., Lu,W.D.: K-means data clustering with memristor networks. Nano Lett. 18(7), 4447–4453 (2018)
CrossRef Google scholar
[81]
Zhou,H., Chen,J., Wang,Y., Liu, S., Li,Y., Li,Q., Liu,Q., Wang,Z., He, Y., Xu,H.: Energy-efficient memristive Euclidean distance engine for brain-inspired competitive learning. Adv. Intell. Syst. 3, 2100114 (2021)
CrossRef Google scholar
[82]
Choi,S., Shin,J.H., Lee,J., Sheridan, P., Lu,W.D.: Experimental demonstration of feature extraction and dimensionality reduction using memristor networks. Nano Lett. 17(5), 3113–3118 (2017)
CrossRef Google scholar
[83]
Zhou,H., Li,Y., Miao,X.: Low-time-complexity document clustering using memristive dot product engine. Science China. Inf. Sci. 65(2), 122410 (2022)
CrossRef Google scholar
[84]
Milo,V., Anzalone, F., Zambelli,C., Pérez,E., Mahadevaiah, M.K., Ossorio,Ó.G., Olivo,P., Wenger, C., Ielmini,D.: Optimized programming algorithms for multilevel RRAM in hardware neural networks. In: Proceedings of 2021 IEEE International Reliability Physics Symposium (IRPS). IEEE, 1–6 (2021)
CrossRef Google scholar
[85]
Wang,Z., Joshi,S., Savel’ev,S.E., Jiang,H., Midya,R., Lin,P., Hu, M., Ge,N., Strachan,J.P., Li,Z., Wu,Q., Barnell, M., Li,G.L., Xin,H.L., Williams, R.S., Xia,Q., Yang,J.J.: Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16(1), 101–108 (2017)
CrossRef Google scholar
[86]
Chen,P.Y., Peng,X., Yu,S.: NeuroSim+: an integrated device-to-algorithm framework for benchmarking synaptic devices and array architectures. In: Proceedings of 2017 IEEE International Electron Devices Meeting (IEDM). IEEE, 6.1.1–6.1.4 (2017)
CrossRef Google scholar
[87]
Hopfield,J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79(8), 2554–2558 (1982)
CrossRef Google scholar
[88]
Cai,F., Kumar,S., Van Vaerenbergh,T., Sheng,X., Liu,R., Li,C., Liu, Z., Foltin,M., Yu,S., Xia,Q., Yang,J.J., Beausoleil, R., Lu,W.D., Strachan,J.P.: Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks. Nat. Electron. 3(7), 409–418 (2020)
CrossRef Google scholar
[89]
Yang,K., Duan,Q., Wang,Y., Zhang, T., Yang,Y., Huang,R.: Transiently chaotic simulated annealing based on intrinsic nonlinearity of memristors for efficient solution of optimization problems. Sci Adv 6(33), eaba9901 (2020)
CrossRef Google scholar
[90]
Mahmoodi,M.R., Prezioso, M., Strukov,D.B.: Versatile stochastic dot product circuits based on nonvolatile memories for high performance neurocomputing and neurooptimization. Nat. Commun. 10(1), 5113 (2019)
CrossRef Google scholar
[91]
Dalgaty,T., Castellani, N., Turck,C., Harabi,K.E., Querlioz, D., Vianello,E.: In situ learning using intrinsic memristor variability via Markov chain Monte Carlo sampling. Nat. Electron. 4(2), 151–161 (2021)
CrossRef Google scholar
[92]
Chen,L., Aihara, K.: Chaotic simulated annealing by a neural network model with transient chaos. Neural Netw. 8(6), 915–930 (1995)
CrossRef Google scholar
[93]
Lu,J., Wu,Z., Zhang,X., Wei, J., Fang,Y., Shi,T., Liu,Q., Wu,F., Liu, M.: Quantitatively evaluating the effect of read noise in memristive Hopfield network on solving traveling salesman problem. IEEE Electron Device Lett. 41(11), 1688–1691 (2020)
CrossRef Google scholar
[94]
Fahimi,Z., Mahmoodi, M.R., Nili,H., Polishchuk,V., Strukov, D.B.: Combinatorial optimization by weight annealing in memristive hopfield networks. Sci. Rep. 11(1), 16383 (2021)
CrossRef Google scholar
[95]
Ovaska,S.J., VanLandingham, H.F., Kamiya,A.: Fusion of soft computing and hard computing in industrial applications: an overview. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 32(2), 72–79 (2002)
CrossRef Google scholar
[96]
Baboulin,M., Buttari, A., Dongarra,J., Kurzak,J., Langou, J., Langou,J., Luszczek,P., Tomov,S.: Accelerating scientific computations with mixed precision algorithms. Comput. Phys. Commun. 180(12), 2526–2533 (2009)
CrossRef Google scholar
[97]
Sun,Z., Huang,R.: Time complexity of in memory matrix vector multiplication. IEEE Trans. Circuits Syst. II Express Briefs 68(8), 2785–2789 (2021)
CrossRef Google scholar
[98]
Feinberg,B., Vengalam, U.K.R., Whitehair,N., Wang,S., Ipek,E.: Enabling scientific computing on memristive accelerators. In: Proceedings of 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA). IEEE, 367–382 (2018)
CrossRef Google scholar
[99]
Le Gallo,M., Sebastian, A., Mathis,R., Manica,M., Giefers, H., Tuma,T., Bekas,C., Curioni, A., Eleftheriou,E.: Mixed-precision in-memory computing. Nat. Electron. 1(4), 246–253 (2018)
CrossRef Google scholar
[100]
Sun,Z., Pedretti, G., Ambrosi,E., Bricalli,A., Wang,W., Ielmini,D.: Solving matrix equations in one step with cross-point resistive arrays. Proc. Natl. Acad. Sci. U.S.A. 116(10), 4123–4128 (2019)
CrossRef Google scholar
[101]
Song,T., Chen,X., Han,Y.: Eliminating iterations of iterative methods: solving large-scale sparse linear system in O(1) with RRAM-based in-memory accelerator. In: Proceedings of the 2021 on Great Lakes Symposium on VLSI. ACM, 71–76 (2021)
CrossRef Google scholar
[102]
Feng,Y., Zhan,X., Chen,J.: Flash memory based computing-in-memory to solve time-dependent partial differential equations. In: Proceedings of 2020 IEEE Silicon Nanoelectronics Workshop (SNW). IEEE, 27–28 (2020)
CrossRef Google scholar
[103]
Kalantzis,V., Gupta,A., Horesh,L., Nowicki, T., Squillante,M. S., Wu,C. W., Gokmen, T., Avron,H.: Solving sparse linear systems with approximate inverse preconditioners on analog devices. arXiv preprint arXiv:210706973 (2021)
CrossRef Google scholar
[104]
Sun,Z., Pedretti, G., Mannocci,P., Ambrosi,E., Bricalli, A., Ielmini,D.: Time complexity of in-memory solution of linear systems. IEEE Trans. Electron Devices 67(7), 2945–2951 (2020)
CrossRef Google scholar
[105]
Sun,Z., Pedretti, G., Ambrosi,E., Bricalli,A., Ielmini, D.: In-memory eigenvector computation in time O(1). Adv. Intell. Syst. 2(8), 2000042 (2020)
CrossRef Google scholar
[106]
Sun,Z., Ambrosi, E., Pedretti,G., Bricalli,A., Ielmini, D.: Inmemory PageRank accelerator with a cross-point array of resistive memories. IEEE Trans. Electron Devices 67(4), 1466–1470 (2020)
CrossRef Google scholar
[107]
Sun,Z., Pedretti, G., Bricalli,A., Ielmini,D.: One-step regression and classification with cross-point resistive memory arrays. Sci. Adv. 6(5), eaay2378 (2020)
CrossRef Google scholar
[108]
Buluc,A., Gilbert, J. R.: Challenges and advances in parallel sparse matrix-matrix multiplication. In: Proceedings of 2008 37th International Conference on Parallel Processing. IEEE, 503–510 (2008)
CrossRef Google scholar
[109]
Borštnik,U., VandeVondele, J., Weber,V., Hutter,J.: Sparse matrix multiplication: the distributed block-compressed sparse row library. Parallel Comput. 40(5–6), 47–58 (2014)
CrossRef Google scholar
[110]
Pitas,I.: Digital Image Processing Algorithms and Applications. Wiley, New York (2000)
[111]
Baraniuk,R.G.: Compressive sensing. IEEE Signal Process. Mag. 24(4), 118–121 (2007)
CrossRef Google scholar
[112]
Le Gallo,M., Sebastian, A., Cherubini,G., Giefers,H., Eleftheriou, E.: Compressed sensing recovery using computational memory. In: Proceedings of 2017 IEEE International Electron Devices Meeting (IEDM). IEEE, 28.23.21–28.23.24 (2017)
CrossRef Google scholar
[113]
Canny,J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)
CrossRef Google scholar
[114]
Huo,Q., Song,R., Lei,D., Luo, Q., Wu,Z., Wu,Z., Zhao,X., Zhang,F., Li, L., Liu,M.: Demonstration of 3D convolution kernel function based on 8-layer 3D vertical resistive random access memory. IEEE Electron Device Lett. 41(3), 497–500 (2020)
CrossRef Google scholar
[115]
Halawani,Y., Mohammad, B., Al-Qutayri,M., Al-Sarawi,S.F.: Memristor-based hardware accelerator for image compression. IEEE Trans. VLSI Syst. 26(12), 2749–2758 (2018)
CrossRef Google scholar
[116]
Zhang,B., Uysal,N., Ewetz,R.: Computational restructuring: rethinking image processing using memristor crossbar arrays. In: Proceedings of 2020 Design, Automation and Test in Europe Conference and Exhibition (DATE). IEEE, 1594–1597 (2020)
CrossRef Google scholar
[117]
Zhang,W., Gao,B., Yao,P., Tang, J., Qian,H., Wu,H.: Array-level boosting method with spatial extended allocation to improve the accuracy of memristor based computing-in-memory chips. Science China. Inf. Sci. 64(6), 1–9 (2021)
CrossRef Google scholar
[118]
Oppenheim,A.V., Schafer, R.W., Buck,J.R.: Discrete-Time Signal Processing. Pearson Education India, New Jersey (1999)
[119]
Liu,S., Ren,A., Wang,Y., Varshney, P. K.: Ultra-fast robust compressive sensing based on memristor crossbars. In: Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 1133–1137 (2017)
CrossRef Google scholar
[120]
Qian,F., Gong,Y., Huang,G., Ahi, K., Anwar,M., Wang,L.: A memristor-based compressive sensing architecture. In: Proceedings of 2016 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH). IEEE, 109–114 (2016)
[121]
Zhao,H., Liu,Z., Tang,J., Gao, B., Zhang,Y., Qian,H., Wu,H.: Memristor-based signal processing for edge computing. Tsinghua Sci. Technol. 27(3), 455–471 (2022)
CrossRef Google scholar
[122]
Zhu,R., Tang,Z., Ye,S., Huang, Q., Guo,L., Chang,S.: Memristor-based image enhancement: high efficiency and robustness. IEEE Trans. Electron Devices 68(2), 602–609 (2021)
CrossRef Google scholar
[123]
Ran,H., Wen,S., Wang,S., Cao, Y., Zhou,P., Huang,T.: Memristor-based edge computing of ShuffleNetV2 for image classification. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 40(8), 1701–1710 (2021)
CrossRef Google scholar
[124]
Hong,Q., Li,Y., Wang,X.: Memristive continuous Hopfield neural network circuit for image restoration. Neural Comput. Appl. 32(12), 8175–8185 (2020)
CrossRef Google scholar
[125]
Mennel,L., Symonowicz, J., Wachter,S., Polyushkin,D.K., Molina-Mendoza, A.J., Mueller,T.: Ultrafast machine vision with 2D material neural network image sensors. Nature 579(7797), 62–66 (2020)
CrossRef Google scholar
[126]
Zhou,F., Zhou,Z., Chen,J., Choy, T.H., Wang,J., Zhang,N., Lin,Z., Yu,S., Kang, J., Wong,H.P., Chai,Y.: Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 14(8), 776–782 (2019)
CrossRef Google scholar
[127]
Sun,L., Zhang,Y., Hwang,G., Jiang, J., Kim,D., Eshete,Y.A., Zhao,R., Yang,H.: Synaptic computation enabled by joule heating of single-layered semiconductors for sound localization. Nano Lett. 18(5), 3229–3234 (2018)
CrossRef Google scholar
[128]
Iwata,T., Ono,K., Yoshikawa,T., Sawada,K.: Gas discrimination based on single-device extraction of transient sensor response by a MetalOxide memristor toward olfactory sensor array. In: Proceedings of 2019 IEEE Sensors. IEEE, 1–4 (2019)
CrossRef Google scholar
[129]
Zhou,F., Chai,Y.: Near-sensor and in-sensor computing. Nat. Electron. 3(11), 664–671 (2020)
CrossRef Google scholar
[130]
Chai,Y.: In-sensor computing for machine vision. Nature 579, 32–33 (2020)
CrossRef Google scholar
[131]
Tong,L., Peng,Z., Lin,R., Li, Z., Wang,Y., Huang,X., Xue,K.H., Xu,H., Liu, F., Xia,H., Wang,P., Xu,M., Xiong,W., Hu, W., Xu,J., Zhang,X., Ye,L., Miao,X.: 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware. Science 373(6561), 1353–1358 (2021)
CrossRef Google scholar
[132]
Wang,C., Liang,S.J., Wang,C.Y., Yang, Z.Z., Ge,Y., Pan,C., Shen,X., Wei,W., Zhao, Y., Zhang,Z., Cheng,B., Zhang,C., Miao,F.: Scalable massively parallel computing using continuous-time data representation in nanoscale crossbar array. Nat. Nanotechnol. 16(10), 1079–1085 (2021)
CrossRef Google scholar
[133]
Ankit,A., Hajj,I.E., Chalamalasetti,S.R., Ndu,G., Foltin, M., Williams,R. S., Faraboschi,P., Hwu,W. W., Strachan,J.P., Roy,K.: PUMA: a programmable ultra-efficient memristor-based accelerator for machine learning inference. In: Proceedings of 24th International Conference on Architectural Support for Programming Languages and Operating Systems. ACM, 715–731 (2019)
CrossRef Google scholar
[134]
Christensen,D.V., Dittmann, R., Linares-Barranco,B., Sebastian,A., Gallo,M. L., Redaelli, A., Slesazeck,S., Mikolajick,T., Spiga,S., Menzel,S.: 2021 roadmap on neuromorphic computing and engineering. arXiv preprint arXiv: 210505956 (2021)
[135]
Upadhyay,N.K., Jiang,H., Wang,Z., Asapu, S., Xia,Q., Joshua,Y.J.: Emerging memory devices for neuromorphic computing. Adv. Mater. Technol. 4(4), 1800589 (2019)
CrossRef Google scholar
[136]
Sung,C., Hwang,H., Yoo,I.K.: Perspective: a review on memristive hardware for neuromorphic computation. J. Appl. Phys. 124(15), 151903 (2018)
CrossRef Google scholar
[137]
Zhang,W., Gao,B., Tang,J., Yao, P., Yu,S., Chang,M.F., Yoo,H.J., Qian,H., Wu, H.: Neuro-inspired computing chips. Nat. Electron. 3(7), 371–382 (2020)
CrossRef Google scholar
[138]
Zhou,Y., Xu,N., Gao,B., Zhuge, F., Tang,Z., Deng,X., Li,Y., He,Y., Miao, X.: Complementary memtransistor-based multilayer neural networks for online supervised learning through (anti-) spike-timing-dependent plasticity. IEEE Trans. Neural Netw. Learn. Syst. (2021)
CrossRef Google scholar
[139]
Pedretti,G., Milo,V., Ambrogio,S., Carboni, R., Bianchi,S., Calderoni,A., Ramaswamy, N., Spinelli,A.S., Ielmini,D.: Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity. Sci. Rep. 7(1), 5288 (2017)
CrossRef Google scholar
[140]
Lu,Y.F., Li,Y., Li,H., Wan, T.Q., Huang,X., He,Y.H., Miao,X.: Low-power artificial neurons based on Ag/TiN/HfAlOx/Pt threshold switching memristor for neuromorphic computing. IEEE Electron Device Lett. 41(8), 1245–1248 (2020)
CrossRef Google scholar
[141]
Wan,T.Q., Lu,Y.F., Yuan,J.H., Li, H.Y., Li,Y., Huang,X.D., Xue,K.H., Miao,X.S.: 12.7 mA/cm2 on-current density and high uniformity realized in AgGeSe/Al2O3 selectors. IEEE Electron Device Lett. 42(4), 613–616 (2021)
CrossRef Google scholar
[142]
Li,X., Tang,J., Zhang,Q., Gao, B., Yang,J.J., Song,S., Wu,W., Zhang,W., Yao, P., Deng,N., Deng,L., Xie,Y., Qian,H., Wu, H.: Power-efficient neural network with artificial dendrites. Nat. Nanotechnol. 15(9), 776–782 (2020)
CrossRef Google scholar
[143]
He,Y., Jiang,S., Chen,C., Wan, C., Shi,Y., Wan,Q.: Electrolyte- gated neuromorphic transistors for brain-like dynamic computing. J. Appl. Phys. 130(19), 190904 (2021)
CrossRef Google scholar
[144]
Roy,K., Jaiswal, A., Panda,P.: Towards spike-based machine intelligence with neuromorphic computing. Nature 575(7784), 607–617 (2019)
CrossRef Google scholar
[145]
Chakraborty,I., Jaiswal, A., Saha,A., Gupta,S., Roy,K.: Pathways to efficient neuromorphic computing with non-volatile memory technologies. Appl. Phys. Rev. 7(2), 021308 (2020)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022
AI Summary AI Mindmap
PDF(3722 KB)

Accesses

Citations

Detail

Sections
Recommended

/