RESEARCH ARTICLE

TCNQ-based organic cocrystal integrated red emission and n-type charge transport

  • Mengjia Jiang 1 ,
  • Shuyu Li 2 ,
  • Chun Zhen 1 ,
  • Lingsong Wang 1 ,
  • Fei Li 1 ,
  • Yihan Zhang 1 ,
  • Weibing Dong 3 ,
  • Xiaotao Zhang , 2,3 ,
  • Wenping Hu , 1,4
Expand
  • 1. Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
  • 2. Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
  • 3. Key Laboratory of Resource Chemistry and Eco-Environmental Protection in Qinghai-Tibet Plateau, School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
  • 4. Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China

Received date: 14 Dec 2021

Accepted date: 13 Jan 2022

Published date: 15 Jun 2022

Copyright

2022 The Author(s) 2022

Abstract

Simultaneously realizing the optical and electrical properties of organic materials is always challenging. Herein, a convenient and promising strategy for designing organic materials with integrated optoelectronic properties based on cocrystal engineering has been put forward. By selecting the fluorene (Flu) and the 7,7′,8,8′-tetracyanoquinodimethane (TCNQ) as functional constituents, the Flu-TCNQ cocrystal prepared shows deep red emission at 702 nm, which is comparable to the commercialized red quantum dot. The highest electron mobility of organic field-effect transistor (OFET) based on Flu-TCNQ is 0.32 cm2 V-1s-1. Spectroscopic analysis indicates that the intermolecular driving force contributing to the co-assembly of Flu-TCNQ is mainly charge transfer (CT) interaction, which leads to its different optoelectronic properties from constituents.

Cite this article

Mengjia Jiang , Shuyu Li , Chun Zhen , Lingsong Wang , Fei Li , Yihan Zhang , Weibing Dong , Xiaotao Zhang , Wenping Hu . TCNQ-based organic cocrystal integrated red emission and n-type charge transport[J]. Frontiers of Optoelectronics, 2022 , 15(2) : 21 . DOI: 10.1007/s12200-022-00022-7

1
Dong, H., Fu, X., Liu, J., Wang, Z., Hu, W.: 25th anniversary article: key points for high-mobility organic field-effect transistors. Adv. Mater. 25(43), 6158–6183 (2013)

DOI

2
Sirringhaus, H.: 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26(9), 1319–1335 (2014)

DOI

3
Uoyama, H., Goushi, K., Shizu, K., Nomura, H., Adachi, C.: Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492(7428), 234–238 (2012)

DOI

4
Lee, S.M., Kwon, J.H., Kwon, S., Choi, K.C.: A review of flexible OLEDs toward highly durable unusual displays. IEEE Trans. Electron. Devices 64(5), 1922–1931 (2017)

DOI

5
Yao, Y., Chen, Y., Wang, H., Samorì, P.: Organic photodetectors based on supramolecular nanostructures. SmartMat. 1(1), e1009 (2020)

DOI

6
Brus, V.V., Lee, J., Luginbuhl, B.R., Ko, S.J., Bazan, G.C., Nguyen, T.Q.: Solution-processed semitransparent organic photovoltaics: from molecular design to device performance. Adv. Mater. 31(30), e1900904 (2019)

DOI

7
McCarthy, M.A., Liu, B., Donoghue, E.P., Kravchenko, I., Kim, D.Y., So, F., Rinzler, A.G.: Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science 332(6029), 570–573 (2011)

DOI

8
Ding, R., An, M.H., Feng, J., Sun, H.B.: Organic single-crystalline semiconductors for light-emitting applications: recent advances and developments. Laser Photonics Rev. 13(10), 1900009 (2019)

DOI

9
Lin, J., Hu, Y., Lv, Y., Guo, X., Liu, X.: Light gain amplification in microcavity organic semiconductor laser diodes under electrical pumping. Sci. Bull. 62(24), 1637–1638 (2017)

DOI

10
Chénais, S., Forget, S.: Recent advances in solid-state organic lasers. Polym. Int. 61(3), 390–406 (2012)

DOI

11
Qin, Z., Gao, H., Dong, H., Hu, W.: Organic light-emitting transistors entering a new development stage. Adv. Mater. 33(31), e2007149 (2021)

DOI

12
Liu, J., Zhang, H., Dong, H., Meng, L., Jiang, L., Jiang, L., Wang, Y., Yu, J., Sun, Y., Hu, W., Heeger, A.J.: High mobility emissive organic semiconductor. Nat. Commun. 6(1), 10032 (2015)

DOI

13
Melucci, M., Favaretto, L., Zambianchi, M., Durso, M., Gazzano, M., Zanelli, A., Monari, M., Lobello, M.G., De Angelis, F., Biondo, V., Generali, G., Troisi, S., Koopman, W., Toffanin, S., Capelli, R., Muccini, M.: Molecular tailoring of new thieno(bis) imide-based semiconductors for single layer ambipolar light emitting transistors. Chem. Mater. 25(5), 668–676 (2013)

DOI

14
Deng, J., Xu, Y., Liu, L., Feng, C., Tang, J., Gao, Y., Wang, Y., Yang, B., Lu, P., Yang, W., Ma, Y.: An ambipolar organic field-effect transistor based on an AIE-active single crystal with a high mobility level of 2.0 cm2·V-1·s-1. Chem. Commun. 52(12), 2647 (2016)

DOI

15
Yomogida, Y., Takenobu, T., Shimotani, H., Sawabe, K., Bisri, S.Z., Yamao, T., Hotta, S., Iwasa, Y.: Green light emission from the edges of organic single-crystal transistors. Appl. Phys. Lett. 97(17), 173301 (2010)

DOI

16
Liu, D., De, J., Gao, H., Ma, S., Ou, Q., Li, S., Qin, Z., Dong, H., Liao, Q., Xu, B., Peng, Q., Shuai, Z., Tian, W., Fu, H., Zhang, X., Zhen, Y., Hu, W.: Organic laser molecule with high mobility, high photoluminescence quantum yield, and deep-blue lasing characteristics. J. Am. Chem. Soc. 142(13), 6332–6339 (2020)

DOI

17
Kono, T., Kumaki, D., Nishida, J., Sakanoue, T., Kakita, M., Tada, H., Tokito, S., Yamashita, Y.: High-performance and light-emitting n-type organic field-effect transistors based on dithienylbenzothiadiazole and related heterocycles. Chem. Mater. 19(6), 1218–1220 (2007)

DOI

18
Oh, S., Kim, J.H., Park, S.K., Ryoo, C.H., Park, S.Y.: Fabrication of pixelated organic light-emitting transistor (OLET) with a pure red-emitting organic semiconductor. Adv. Opt. Mater. 7(23), 1901274 (2019)

DOI

19
Zhu, W., Dong, H., Zhen, Y., Hu, W.: Challenges of organic “cocrystals.”. Sci. China Mater. 58(11), 854–859 (2015)

DOI

20
Huang, Y., Wang, Z., Chen, Z., Zhang, Q.: Organic cocrystals: beyond electrical conductivities and field-effect transistors (FETs). Angew Chem. Int. Ed. 58(29), 9696–9711 (2019)

DOI

21
Zhang, J., Xu, W., Sheng, P., Zhao, G., Zhu, D.: Organic donor–acceptor complexes as novel organic semiconductors. Acc. Chem. Res. 50(7), 1654–1662 (2017)

DOI

22
Sun, L., Yang, F., Zhang, X., Hu, W.: Stimuli-responsive behaviors of organic charge transfer cocrystals: recent advances and perspectives. Mater. Chem. Front. 4(3), 715–728 (2020)

DOI

23
Sun, L., Wang, Y., Yang, F., Zhang, X., Hu, W.: Cocrystal engineering: a collaborative strategy toward functional materials. Adv. Mater. 31(39), e1902328 (2019)

DOI

24
Wang, Y., Wu, H., Li, P., Chen, S., Jones, L.O., Mosquera, M.A., Zhang, L., Cai, K., Chen, H., Chen, X.Y., Stern, C.L., Wasielewski, M.R., Ratner, M.A., Schatz, G.C., Stoddart, J.F.: Two-photon excited deep-red and near-infrared emissive organic co-crystals. Nat. Commun. 11(1), 4633 (2020)

DOI

25
Bhowal, R., Biswas, S., Thumbarathil, A., Koner, A.L., Chopra, D.: Exploring the relationship between intermolecular interactions and solid-state photophysical properties of organic cocrystals. J. Chem. Phys. 123(14), 9311–9322 (2019)

DOI

26
Black, H.T., Perepichka, D.F.: Crystal engineering of dual channel p/n organic semiconductors by complementary hydrogen bonding. Angew Chem. Int. Ed. 53(8), 2138–2142 (2014)

DOI

27
Liu, H., Liu, Z., Jiang, W., Fu, H.: Tuning the charge transfer properties by optimized donor–acceptor cocrystal for FET applications: from P type to N type. J. Solid State Chem. 274, 47–51 (2019)

DOI

28
Liang, Y., Qin, Y., Chen, J., Xing, W., Zou, Y., Sun, Y., Xu, W., Zhu, D.: Band engineering and majority carrier switching in isostructural donor–acceptor complexes DPTTA-FXTCNQ crystals (X = 1, 2, 4). Adv. Sci. 7(3), 1902456–1902464 (2019)

DOI

29
Park, S.K., Varghese, S., Kim, J.H., Yoon, S.J., Kwon, O.K., An, B.K., Gierschner, J., Park, S.Y.: Tailor-made highly luminescent and ambipolar transporting organic mixed stacked charge-transfer crystals: an isometric donor–acceptor approach. J. Am. Chem. Soc. 135(12), 4757–4764 (2013)

DOI

30
Park, S.K., Kim, J.H., Ohto, T., Yamada, R., Jones, A.O.F., Whang, D.R., Cho, I., Oh, S., Hong, S.H., Kwon, J.E., Kim, J.H., Olivier, Y., Fischer, R., Resel, R., Gierschner, J., Tada, H., Park, S.Y.: Highly luminescent 2D-type slab crystals based on a molecular charge-transfer complex as promising organic light-emitting transistor materials. Adv. Mater. 29(36), 1701346 (2017)

DOI

31
Chiang, C.L., Wu, M.T., Dai, D.C., Wen, Y.S., Wang, J.K., Chen, C.T.: Red-emitting fluorenes as efficient emitting hosts for non-doped, organic red-light-emitting diodes. Adv. Funct. Mater. 15(2), 231–238 (2005)

DOI

32
Sun, L., Zhu, W., Yang, F., Li, B., Ren, X., Zhang, X., Hu, W.: Molecular cocrystals: design, charge-transfer and optoelectronic functionality. Phys. Chem. Chem. Phys. 20(9), 6009–6023 (2018)

DOI

33
Jiang, L., Gao, J., Wang, E., Li, H., Wang, Z., Hu, W., Jiang, L.: Organic single-crystalline ribbons of a rigid “H”-type anthracene derivative and high-performance, short-channel field-effect transistors of individual micro/nanometer-sized ribbons fabricated by an “organic ribbon mask” technique. Adv. Mater. 20(14), 2735–2740 (2008)

DOI

34
Wang, W., Luo, L., Sheng, P., Zhang, J., Zhang, Q.: Multifunctional features of organic charge-transfer complexes: advances and perspectives. Chemistry (Weinheim an der Bergstrasse, Germany) 27(2), 464–490 (2021)

DOI

35
Qin, Y., Cheng, C., Geng, H., Wang, C., Hu, W., Xu, W., Shuai, Z., Zhu, D.: Efficient ambipolar transport properties in alternate stacking donor–acceptor complexes: from experiment to theory. Phys. Chem. Chem. Phys. 18(20), 14094–14103 (2016)

DOI

36
Croce, G., Arrais, A., Diana, E., Civalleri, B., Viterbo, D., Milanesio, M.: The interpretation of the short range disorder in the fluorene TCNE crystal structure. Int. J. Mol. Sci. 5(3), 93–100 (2004)

DOI

37
Zhang, J., Geng, H., Virk, T.S., Zhao, Y., Tan, J., Di, C.A., Xu, W., Singh, K., Hu, W., Shuai, Z., Liu, Y., Zhu, D.: Sulfur-bridged annulene-TCNQ co-crystal: a self-assembled “molecular level heterojunction” with air stable ambipolar charge transport behavior. Adv. Mater. 24(19), 2603–2607 (2012)

DOI

38
Usman, R., Khan, A., Sun, H., Wang, M.: Study of charge transfer interaction modes in the mixed donor–acceptor cocrystals of pyrene derivatives and TCNQ: a combined structural, thermal, spectroscopic, and hirshfeld surfaces analysis. J. Solid State Chem. 266, 112–120 (2018)

DOI

39
Wakahara, T., Nagaoka, K., Nakagawa, A., Hirata, C., Matsushita, Y., Miyazawa, K., Ito, O., Wada, Y., Takagi, M., Ishimoto, T., Tachikawa, M., Tsukagoshi, K.: One-dimensional fullerene/porphyrin cocrystals: near-infrared light sensing through component interactions. ACS Appl. Mater. Interfaces 12(2), 2878–2883 (2020)

DOI

40
Wang, Y., Zhu, W., Du, W., Liu, X., Zhang, X., Dong, H., Hu, W.: Cocrystals strategy towards materials for near-infrared photothermal conversion and imaging. Angew Chem. Int. Ed. 57(15), 3963–3967 (2018)

DOI

41
Liang, Y., Xing, W., Liu, L., Sun, Y., Xu, W., Zhu, D.: Charge transport behaviors of a novel 2:1 charge transfer complex based on coronene and HAT(CN)6. Org. Electron. 78, 105608 (2020)

DOI

42
Mandal, A., Swain, P., Nath, B., Sau, S., Mal, P.: Unipolar to ambipolar semiconductivity switching in charge transfer cocrystals of 2,7-di-tertbutylpyrene. CrystEngComm. 21(6), 981–989 (2019)

DOI

43
Ye, H., Liu, G., Liu, S., Casanova, D., Ye, X., Tao, X., Zhang, Q., Xiong, Q.: Molecular-barrier-enhanced aromatic fluorophores in cocrystals with unity quantum efficiency. Angew Chem. Int. Ed. 57(7), 1928–1932 (2018)

DOI

44
Dai, X., Zhang, Z., Jin, Y., Niu, Y., Cao, H., Liang, X., Chen, L., Wang, J., Peng, X.: Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515(7525), 96–99 (2014)

DOI

45
Wu, H., Sun, Y., Sun, L., Wang, L., Zhang, X., Hu, W.: Deep insight into the charge transfer interactions in 1,2,4,5-tetracy-anobenzene-phenazine cocrystal. Chin. Chem. Lett. 32(10), 3007–3010 (2021)

DOI

46
Tsutsumi, J., Matsuoka, S., Inoue, S., Minemawari, H., Yamada, T., Hasegawa, T.: N-type field-effect transistors based on layered crystalline donor–acceptor semiconductors with dialkylated benzothienobenzothiophenes as electron donors. J. Mater. Chem. C Mater. Opt. Electron. Dev. 3(9), 1976–1981 (2015)

DOI

47
Geng, H., Zhu, L., Yi, Y., Zhu, D., Shuai, Z.: Superexchange induced charge transport in organic donor–acceptor cocrystals and copolymers: a theoretical perspective. Chem. Mater. 31(17), 6424–6434 (2019)

DOI

48
Geng, H., Zheng, X., Shuai, Z., Zhu, L., Yi, Y.: Understanding the charge transport and polarities in organic donor–acceptor mixed-stack crystals: molecular insights from the super-exchange couplings. Adv. Mater. 27(8), 1443–1449 (2015)

DOI

49
Zhu, L., Geng, H., Yi, Y., Wei, Z.: Charge transport in organic donor–acceptor mixed-stack crystals: the role of nonlocal electron–phonon couplings. Phys. Chem. Chem. Phys. 19(6), 4418–4425 (2017)

DOI

Outlines

/