Hydrothermal synthesized delafossite CuGaO2 as an electrocatalyst for water oxidation
Received date: 19 Dec 2021
Accepted date: 21 Jan 2022
Published date: 15 Mar 2022
Copyright
Hydrogen production from water splitting provides an effective method to alleviate the ever-growing global energy crisis. In this work, delafossite CuGaO2 (CGO) crystal was synthesized through hydrothermal routes with Cu(NO3)2·3H2O and Ga(NO3)3·xH2O used as reactants. The addition of cetyltrimethylammonium bromide (CTAB) was found to play an important role in modifying the morphology of CuGaO2 (CGO-CTAB). With the addition of CTAB, the morphology of CGO-CTAB samples changed from irregular flake to typical hexagonal sheet microstructure, with an average size of 1–2 µm and a thickness of around 100 nm. Furthermore, the electrocatalytic activity of CGO-CTAB crystals for oxygen evolution reaction (OER) was also studied and compared with that of CGO crystals. CGO-CTAB samples exhibited better activity than CGO. An overpotential of 391.5 mV was shown to be able to generate a current density of 10 mA/cm2. The as-prepared samples also demonstrate good stability for water oxidation and relatively fast OER kinetics with a Tafel slope of 56.4 mV/dec. This work highlights the significant role of modification of CTAB surfactants in preparing CGO related crystals, and the introduction of CTAB was found to help to improve their electrocatalytic activity for OER.
Key words: Hydrothermal; Water splitting; Delafossite; CuGaO2 (CGO); Electrocatalyst
Han Gao , Miao Yang , Xing Liu , Xianglong Dai , Xiao-Qing Bao , Dehua Xiong . Hydrothermal synthesized delafossite CuGaO2 as an electrocatalyst for water oxidation[J]. Frontiers of Optoelectronics, 2022 , 15(1) : 8 . DOI: 10.1007/s12200-022-00014-7
1 |
Zhong,L., Zhou,H., Li,R., Bian, T., Wang,S., Yuan,A.: In situ confinement pyrolysis of ZIF-67 nanocrystals on hollow carbon spheres towards efficient electrocatalysts for oxygen reduction. J. Colloid Interface Sci. 584, 439–448 (2021)
|
2 |
Qi,Y., Wu,J., Xu,J., Gao, H., Du,Z., Liu,B., Liu,L., Xiong,D.: One-step fabrication of a self-supported Co@CoTe2 electrocatalyst for efficient and durable oxygen evolution reactions. Inorg. Chem. Front. 7(13), 2523–2532 (2020)
|
3 |
Li,Y.S., Yi,J.W., Wei,J.H., Wu, Y.P., Li,B., Liu,S., Jiang,C., Yu,H.G., Li, D.S.: Three 2D polyhalogenated Co(II)-based MOFs: syntheses, crystal structure and electrocatalytic hydrogen evolution reaction. J. Solid State Chem. 281, 121052 (2020)
|
4 |
Harriman,A.: Electrochemical catalysts to meet the challenge for sustainable fuel production from renewable energy. Curr. Opin. Green Sustain. Chem. 30, 100492 (2021)
|
5 |
Chen,Z., Wei,W., Ni,B.J.: Cost-effective catalysts for renewable hydrogen production via electrochemical water splitting: recent advances. Curr. Opin. Green Sustain. Chem. 27, 100398 (2021)
|
6 |
Talib,S.H., Lu,Z., Yu,X., Ahmad, K., Bashir,B., Yang,Z., Li,J.: Theoretical inspection of M1/PMA single-atom electrocatalyst: ultra-high performance for water splitting (HER/OER) and oxygen reduction reactions (OER). ACS Catal. 11(14), 8929–8941 (2021)
|
7 |
Wang,C., Jin,L., Shang,H., Xu, H., Shiraishi,Y., Du,Y.: Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. Chin. Chem. Lett. 32(7), 2108–2116 (2021)
|
8 |
Ye,C., Zhang,L., Yue,L., Deng, B., Cao,Y., Liu,Q., Luo,Y., Lu,S., Zheng, B., Sun,X.: A NiCo LDH nanosheet array on graphite felt: an efficient 3D electrocatalyst for the oxygen evolution reaction in alkaline media. Inorg. Chem. Front. 8(12), 3162–3166 (2021)
|
9 |
Weber,T., Vonk,V., Escalera,L.D., Abbondanza,G., Larsson, A., Koller,V., Abb,M., Hegedus, Z., Backer,T., Lienert,U., Harlow, G.S., Stierle,A., Cherevko,S., Lundgren, E., Over,H.: Operando stability studies of ultrathin single-crystalline IrO2(110) films under acidic oxygen evolution reaction conditions. ACS Catal. 11(20), 12651–12660 (2021)
|
10 |
Wang,Y., Hou,S., Ma,R., Jiang, J., Shi,Z., Liu,C., Ge,J., Xing,W.: Modulating crystallinity and surface electronic structure of IrO2 via gadolinium doping to promote acidic oxygen evolution. ACS Sustain. Chem. Eng. 9(32), 10710–10716 (2021)
|
11 |
Qiu,Y., Lopez-Ruiz, J.A., Sanyal,U., Andrews,E., Gutiérrez, O.Y., Holladay,J.D.: Anodic electrocatalytic conversion of carboxylic acids on thin films of RuO2, IrO2, and Pt. Appl. Catal. B 277, 119277 (2020)
|
12 |
Song,F., Bai,L., Moysiadou,A., Lee,S., Hu,C., Liardet,L., Hu, X.: Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J. Am. Chem. Soc. 140(25), 7748–7759 (2018)
|
13 |
Wang,D., Luo,D., Zhang,Y., Zhao, Y., Zhou,G., Shui,L., Chen,Z., Wang,X.: Deciphering interpenetrated interface of transition metal oxides/phosphates from atomic level for reliable Li/S electrocatalytic behavior. Nano Energy 81, 105602 (2021)
|
14 |
Cai,Z., Bu,X., Wang,P., Ho, J.C., Yang,J., Wang,X.: Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A Mater. Energy Sustain. 7(10), 5069–5089 (2019)
|
15 |
Yu,M., Zhou,S., Wang,Z., Zhao, J., Qiu,J.: Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy 44, 181–190 (2018)
|
16 |
Feng,W., Pang,W., Xu,Y., Guo, A., Gao,X., Qiu,X., Chen,W.: Transition metal selenides for electrocatalytic hydrogen evolution reaction. ChemElectroChem 7(1), 31–54 (2019)
|
17 |
Peng,X., Yan,Y., Jin,X., Huang, C., Jin,W., Gao,B., Chu,P.K.: Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 78, 105234 (2020)
|
18 |
Qi,J., Lin,Y.P., Chen,D., Zhou, T., Zhang,W., Cao,R.: Autologous cobalt phosphates with modulated coordination sites for electrocatalytic water oxidation. Angew Chem. Int. Ed. 59(23), 8917–8921 (2020)
|
19 |
Xu,Y., Wang,R., Zheng,Y., Zhang, L., Jiao,T., Peng,Q., Liu,Z.: Facile preparation of self-assembled Ni/Co phosphates composite spheres with highly efficient HER electrocatalytic performances. Appl Surf Sci 509, 145383 (2020)
|
20 |
Zhao,S.Y., Zhang,B., Su,H., Zhang, J.J., Li,X.H., Wang,K.X., Chen,J.S., Wei,X., Feng, P.: Enhanced oxygen electroreduction over nitrogen-free carbon nanotube-supported CuFeO2 nanoparticles. J. Mater. Chem. A Mater. Energy Sustain. 6(10), 4331–4336 (2018)
|
21 |
Du,Z., Qian,J., Bai,J., Li, H., Wang,M., Zhao,X., Xiong,D.: Surfactant-modified hydrothermal synthesis of Ca-doped CuCoO2 nanosheets with abundant active sites for enhanced electrocatalytic oxygen evolution. Inorg. Chem. 59(14), 9889–9899 (2020)
|
22 |
Du,Z., Xiong,D., Verma,S.K., Liu, B., Zhao,X., Liu,L., Li,H.: A low temperature hydrothermal synthesis of delafossite CuCoO2 as an efficient electrocatalyst for the oxygen evolution reaction in alkaline solutions. Inorg. Chem. Front. 5(1), 183–188 (2018)
|
23 |
Xiong,D., Du,Z., Li,H., Xu, J., Li,J., Zhao,X., Liu,L.: Polyvinylpyrrolidone-assisted hydrothermal synthesis of CuCoO2 nanoplates with enhanced oxygen evolution reaction performance. ACS Sustain. Chem. Eng. 7(1), 1493–1501 (2019)
|
24 |
Mao,L., Mohan,S., Mao,Y.: Delafossite CuMnO2 as an efficient bifunctional oxygen and hydrogen evolution reaction electrocatalyst for water splitting. J. Electrochem. Soc. 166(6), H233–H242 (2019)
|
25 |
Zhang,R., Sun,Z., Zong,C., Lin, Z., Huang,H., Yang,K., Chen,J., Liu,S., Huang, M., Yang,Y., Zhang,W., Chen,Q.: Increase of Co 3D projected electronic density of states in AgCoO2 enabled an efficient electrocatalyst toward oxygen evolution reaction. Nano Energy 57, 753–760 (2019)
|
26 |
Choi,M., Yagi,S., Ohta,Y., Kido, K., Hayakawa,T.: Estimation of delafossite P-type CuGaO2/ZnO hybrids as semiconductor photocatalyst by controlling particle size. J. Phys. Chem. Solids 150, 109845 (2021)
|
27 |
Muñoz-García,A.B., Caputo,L., Schiavo, E., Baiano,C., Maddalena,P., Pavone, M.: Ab initio study of anchoring groups for CuGaO2 delafossite-based p-type dye sensitized solar cells. Front. Chem. 7, 158 (2019)
|
28 |
Zhao,Q.M., Zhao,Z.Y., Liu,Q.L., Yao, G.Y., Dong,X.D.: Delafossite CuGaO2 as promising visible-light-driven photocatalyst: synthesize, properties, and performances. J. Phys. D Appl. Phys. 53(13), 135102 (2020)
|
29 |
Ahmed,J., Mao,Y.: Synthesis, characterization and electrocatalytic properties of delafossite CuGaO2. J. Solid State Chem. 242, 77–85 (2016)
|
30 |
Ahmed,J., Poltavets, V.V., Prakash,J., Alshehri,S.M., Ahamad, T.: Sol-gel synthesis, structural characterization and bifunctional catalytic activity of nanocrystalline delafossite CuGaO2 particles. J. Alloy. Compd. 688, 1157–1161 (2016)
|
31 |
Xiong,D., Zeng,X., Zhang,W., Wang, H., Zhao,X., Chen,W., Cheng,Y.B.: Synthesis and characterization of CuAlO2 and AgAlO2 delafossite oxides through low-temperature hydrothermal methods. Inorg. Chem. 53(8), 4106–4116 (2014)
|
32 |
Xiong,D., Zhang,W., Zeng,X., Xu, Z., Chen,W., Cui,J., Wang,M., Sun,L., Cheng, Y.B.: Enhanced performance of p-type dyesensitized solar cells based on ultrasmall Mg-doped CuCrO2 nanocrystals. Chemsuschem 6(8), 1432–1437 (2013)
|
33 |
Xiong,D., Xu,Z., Zeng,X., Zhang, W., Chen,W., Xu,X., Wang,M., Cheng,Y.B.: Hydrothermal synthesis of ultrasmall CuCrO2 nanocrystal alternatives to NiO nanoparticles in efficient p-type dye-sensitized solar cells. J. Mater. Chem. 22(47), 24760–24768 (2012)
|
34 |
Xiong,D., Qi,Y., Li,X., Liu, X., Tao,H., Chen,W., Zhao,X.: Hydrothermal synthesis of delafossite CuFeO2 crystals at 100°C. RSC Adv. 5(61), 49280–49286 (2015)
|
35 |
Xiong,D., Zhang,Q., Verma,S.K., Bao, X.Q., Li,H., Zhao,X.: Crystal structural, optical properties and Mott-Schottky plots of p-type Ca doped CuFeO2 nanoplates. Mater. Res. Bull. 83, 141– 147 (2016)
|
36 |
Xiong,D., Zhang,Q., Du,Z., Verma, S.K., Li,H., Zhao,X.: Low temperature hydrothermal synthesis mechanism and thermal stability of p-type CuMnO2 nanocrystals. New J. Chem. 40(7), 6498–6504 (2016)
|
37 |
Xiong,D., Gao,H., Deng,Y., Qi, Y., Du,Z., Zeng,X., Li,H.: Impact of Mg doping on the optical and electrical properties of p-type CuMnO2 ultrathin nanosheets. J. Mater. Sci.: Mater. Electron. 31(7), 5416–5452 (2020)
|
38 |
Deng,Y., Xiong,D., Gao,H., Wu, J., Verma,S.K., Liu,B., Zhao,X.: Hydrothermal synthesis of delafossite CuScO2 hexagonal plates as an electrocatalyst for the alkaline oxygen evolution reaction. Dalton Trans. (Cambridge, England) 49(11), 3519–3524 (2020)
|
39 |
Du,Z., Xiong,D., Qian,J., Zhang, T., Bai,J., Fang,D., Li,H.: Investigation of the structural, optical and electrical properties of Ca2+ doped CuCoO2 nanosheets. Dalton Trans. (Cambridge, England) 48(36), 13753–13759 (2019)
|
40 |
Du,Z., Qian,J., Zhang,T., Ji, C., Wu,J., Li,H., Xiong,D.: Solvothermal synthesis of CuCoO2 nanoplates using zeolitic imidazolate framework-67 (ZIF-67) as a Co-derived precursor. New J. Chem. 43(38), 15233–15239 (2019)
|
41 |
Gao,H., Zeng,X., Guo,Q., Yang, Z., Deng,Y., Li,H., Xiong,D.: P-type transparent conducting characteristics of delafossite Ca doped CuScO2 prepared by hydrothermal synthesis. Dalton Trans. (Cambridge, England) 50(15), 5262–5268 (2021)
|
42 |
Li,J.H., Wang,Y.S., Chen,Y.C., Kung, C.W.: Metal-organic frameworks toward electrocatalytic applications. Appl. Sci. (Basel, Switzerland) 9(12), 2427 (2019)
|
43 |
Yu,M., Natu,G., Ji,Z., Wu, Y.: p-Type dye-sensitized solar cells based on delafossite CuGaO2 nanoplates with saturation photovoltages exceeding 460 mV. J. Phys. Chem. Lett. 3(9), 1074–1078 (2012)
|
44 |
Yu,M., Draskovic, T.I., Wu,Y.: Understanding the crystallization mechanism of delafossite CuGaO2 for controlled hydrothermal synthesis of nanoparticles and nanoplates. Inorg. Chem. 53(11), 5845–5851 (2014)
|
45 |
Qiao,X., Jin,J., Luo,J., Fan, H., Cui,L., Wang,W., Liu,D., Liao,S.: In-situ formation of N doped hollow graphene nanospheres/CNTs architecture with encapsulated Fe3C@C nanoparticles as efficient bifunctional oxygen electrocatalysts. J. Alloy. Compd. 828, 154238 (2020)
|
46 |
Xu,S., Wang,M., Saranya,G., Chen, N., Zhang,L., He,Y., Wu,L., Gong,Y., Yao, Z., Wang,G., Wang,Z., Zhao,S., Tang,H., Chen, M., Gou,H.: Pressure-driven catalyst synthesis of Codoped Fe3C@ carbon nano-onions for efficient oxygen evolution reaction. Appl. Catal. B 268, 118385 (2020)
|
47 |
Chiu,T.W., Huang,P.S.: Preparation of delafossite CuFeO2 coral-like powder using a self-combustion glycine nitrate process. Ceram. Int. 39, S575–S578 (2013)
|
48 |
Zou,L., Kitta,M., Hong,J., Suenaga, K., Tsumori,N., Liu,Z., Xu,Q.: Fabrication of a spherical superstructure of carbon nanorods. Adv. Mater. 31(24), e1900440 (2019)
|
49 |
Zhao,R.D., Zhang,Y.M., Liu,Q.L., Zhao, Z.Y.: Effects of the preparation process on the photocatalytic performance of delafossite CuCrO2. Inorg. Chem. 59(22), 16679–16689 (2020)
|
50 |
Xin,S., Liu,G., Ma,X., Gong, J., Ma,B., Yan,Q., Chen,Q., Ma,D., Zhang, G., Gao,M., Xin,Y.: High efficiency heterogeneous fenton-like catalyst biochar modified CuFeO2 for the degradation of tetracycline: economical synthesis, catalytic performance and mechanism. Appl. Catal. B 280, 119386 (2021)
|
51 |
Li,T., Xu,M., Peng,K., Sun, Y., Wang,M., Dai,H., Liu,D., Xue,R., Chen, Z.: Evolution of microstructure, defect, optoelectronic and magnetic properties of Cu1-xCaxFeO2 ceramics. J. Phys. Chem. Solids 151, 109910 (2021)
|
52 |
Bourque,J.L., Biesinger, M.C., Baines,K.M.: Chemical state determination of molecular gallium compounds using XPS. Dalton Trans. (Cambridge, England) 45(18), 7678–7696 (2016)
|
53 |
Sarpaki,S., Cortezon-Tamarit, F., de Aguiar,S.R.M.M., Exner,R.M., Divall, D., Arrowsmith,R.L., Ge,H., Palomares, F.J., Carroll,L., Calatayud,D.G., Paisey, S.J., Aboagye,E.O., Pascu,S.I.: Radio- and nano-chemistry of aqueous Ga(iii) ions anchored onto graphene oxide-modified complexes. Nanoscale 12(12), 6603–6608 (2020)
|
54 |
Huang,R., Liu,T., Zhao,Y., Zhu, Y., Huang,Z., Li,F., Liu,J., Zhang,L., Zhang, S., Ding,A., Yang,H.: Angular dependent XPS study of surface band bending on Ga-polar N-GaN. Appl. Surf. Sci. 440, 637–642 (2018)
|
55 |
Grodzicki,M., Rousset, J.G., Ciechanowicz,P., Piskorska-Hommel,E., Hommel, D.: XPS studies on the role of arsenic incorporated into GaN. Vacuum 167, 73–76 (2019)
|
56 |
Wang,Z., Xu,J., Yang,J., Xue, Y., Dai,L.: Ultraviolet/ozone treatment for boosting OER activity of MOF nanoneedle arrays. Chem. Eng. J. 427, 131498 (2022)
|
57 |
Saad,A., Liu,D., Wu,Y., Song, Z., Li,Y., Najam,T., Zong,K., Tsiakaras,P., Cai,X.: Ag nanoparticles modified crumpled borophene supported Co3O4 catalyst showing superior oxygen evolution reaction (OER) performance. Appl. Catal. B 298, 120529 (2021)
|
58 |
Li,H., Tan,M., Huang,C., Luo, W., Yin,S.F., Yang,W.: Co2(OH)3Cl and MOF mediated synthesis of porous Co3O4/ NC nanosheets for efficient OER catalysis. Appl. Surf. Sci. 542, 148739 (2021)
|
59 |
Kang,T., Kim,J.: Optimal cobalt-based catalyst containing high-ratio of oxygen vacancy synthesized from metal-organic-framework (MOF) for oxygen evolution reaction (OER) enhancement. Appl. Surf. Sci. 560, 150035 (2021)
|
60 |
Li,X., You,S., Du,J., Dai, Y., Chen,H., Cai,Z., Ren,N., Zou,J.: ZIF-67-derived Co3O4@ carbon protected by oxygen-buffering CeO2 as an efficient catalyst for boosting oxygen reduction/evolution reactions. J. Mater. Chem. A Mater. Energy Sustain. 7(45), 25853–25864 (2019)
|
61 |
Bhatti,A., Tahira, A., Gradone,A., Mazzaro,R., Morandi, V., Aftab,U., Abro,M.I., Nafady, A., Qi,K., Infantes-Molina,A., Vomiero, A., Lbupoto,Z.H.: Nanostructured Co3O4 electrocatalyst for OER: the role of organic polyelectrolytes as soft templates. Electrochim. Acta 398, 139338 (2021)
|
62 |
Bian,J., Su,R., Yao,Y., Wang, J., Zhou,J., Li,F., Wang,Z.L., Sun,C.: Mg doped perovskite LaNiO3 nanofibers as an efficient bifunctional catalyst for rechargeable zinc–air batteries. ACS Appl. Energy Mater. 2(1), 923–931 (2019)
|
63 |
Dai,J., Zhu,Y., Zhong,Y., Miao, J., Lin,B., Zhou,W., Shao,Z.: Enabling high and stable electrocatalytic activity of iron-based perovskite oxides for water splitting by combined bulk doping and morphology designing. Adv. Mater. Interfaces 6(1), 1801317 (2019)
|
64 |
Zhang,X., Chen,Y., Zhang,W., Yang, D.: Coral-like hierarchical architecture self-assembled by cobalt hexacyanoferrate nanocrystals and N-doped carbon nanoplatelets as efficient electrocatalyst for oxygen evolution reaction. J. Colloid Interface Sci. 558, 190–199 (2020)
|
/
〈 | 〉 |