Hydrothermal synthesized delafossite CuGaO2 as an electrocatalyst for water oxidation

Han Gao, Miao Yang, Xing Liu, Xianglong Dai, Xiao-Qing Bao, Dehua Xiong

PDF(2230 KB)
PDF(2230 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (1) : 8. DOI: 10.1007/s12200-022-00014-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Hydrothermal synthesized delafossite CuGaO2 as an electrocatalyst for water oxidation

Author information +
History +

Abstract

Hydrogen production from water splitting provides an effective method to alleviate the ever-growing global energy crisis. In this work, delafossite CuGaO2 (CGO) crystal was synthesized through hydrothermal routes with Cu(NO3)2·3H2O and Ga(NO3)3·xH2O used as reactants. The addition of cetyltrimethylammonium bromide (CTAB) was found to play an important role in modifying the morphology of CuGaO2 (CGO-CTAB). With the addition of CTAB, the morphology of CGO-CTAB samples changed from irregular flake to typical hexagonal sheet microstructure, with an average size of 1–2 µm and a thickness of around 100 nm. Furthermore, the electrocatalytic activity of CGO-CTAB crystals for oxygen evolution reaction (OER) was also studied and compared with that of CGO crystals. CGO-CTAB samples exhibited better activity than CGO. An overpotential of 391.5 mV was shown to be able to generate a current density of 10 mA/cm2. The as-prepared samples also demonstrate good stability for water oxidation and relatively fast OER kinetics with a Tafel slope of 56.4 mV/dec. This work highlights the significant role of modification of CTAB surfactants in preparing CGO related crystals, and the introduction of CTAB was found to help to improve their electrocatalytic activity for OER.

Graphical abstract

Keywords

Hydrothermal / Water splitting / Delafossite / CuGaO2 (CGO) / Electrocatalyst

Cite this article

Download citation ▾
Han Gao, Miao Yang, Xing Liu, Xianglong Dai, Xiao-Qing Bao, Dehua Xiong. Hydrothermal synthesized delafossite CuGaO2 as an electrocatalyst for water oxidation. Front. Optoelectron., 2022, 15(1): 8 https://doi.org/10.1007/s12200-022-00014-7

References

[1]
Zhong,L., Zhou,H., Li,R., Bian, T., Wang,S., Yuan,A.: In situ confinement pyrolysis of ZIF-67 nanocrystals on hollow carbon spheres towards efficient electrocatalysts for oxygen reduction. J. Colloid Interface Sci. 584, 439–448 (2021)
CrossRef Google scholar
[2]
Qi,Y., Wu,J., Xu,J., Gao, H., Du,Z., Liu,B., Liu,L., Xiong,D.: One-step fabrication of a self-supported Co@CoTe2 electrocatalyst for efficient and durable oxygen evolution reactions. Inorg. Chem. Front. 7(13), 2523–2532 (2020)
CrossRef Google scholar
[3]
Li,Y.S., Yi,J.W., Wei,J.H., Wu, Y.P., Li,B., Liu,S., Jiang,C., Yu,H.G., Li, D.S.: Three 2D polyhalogenated Co(II)-based MOFs: syntheses, crystal structure and electrocatalytic hydrogen evolution reaction. J. Solid State Chem. 281, 121052 (2020)
CrossRef Google scholar
[4]
Harriman,A.: Electrochemical catalysts to meet the challenge for sustainable fuel production from renewable energy. Curr. Opin. Green Sustain. Chem. 30, 100492 (2021)
CrossRef Google scholar
[5]
Chen,Z., Wei,W., Ni,B.J.: Cost-effective catalysts for renewable hydrogen production via electrochemical water splitting: recent advances. Curr. Opin. Green Sustain. Chem. 27, 100398 (2021)
CrossRef Google scholar
[6]
Talib,S.H., Lu,Z., Yu,X., Ahmad, K., Bashir,B., Yang,Z., Li,J.: Theoretical inspection of M1/PMA single-atom electrocatalyst: ultra-high performance for water splitting (HER/OER) and oxygen reduction reactions (OER). ACS Catal. 11(14), 8929–8941 (2021)
CrossRef Google scholar
[7]
Wang,C., Jin,L., Shang,H., Xu, H., Shiraishi,Y., Du,Y.: Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. Chin. Chem. Lett. 32(7), 2108–2116 (2021)
CrossRef Google scholar
[8]
Ye,C., Zhang,L., Yue,L., Deng, B., Cao,Y., Liu,Q., Luo,Y., Lu,S., Zheng, B., Sun,X.: A NiCo LDH nanosheet array on graphite felt: an efficient 3D electrocatalyst for the oxygen evolution reaction in alkaline media. Inorg. Chem. Front. 8(12), 3162–3166 (2021)
CrossRef Google scholar
[9]
Weber,T., Vonk,V., Escalera,L.D., Abbondanza,G., Larsson, A., Koller,V., Abb,M., Hegedus, Z., Backer,T., Lienert,U., Harlow, G.S., Stierle,A., Cherevko,S., Lundgren, E., Over,H.: Operando stability studies of ultrathin single-crystalline IrO2(110) films under acidic oxygen evolution reaction conditions. ACS Catal. 11(20), 12651–12660 (2021)
CrossRef Google scholar
[10]
Wang,Y., Hou,S., Ma,R., Jiang, J., Shi,Z., Liu,C., Ge,J., Xing,W.: Modulating crystallinity and surface electronic structure of IrO2 via gadolinium doping to promote acidic oxygen evolution. ACS Sustain. Chem. Eng. 9(32), 10710–10716 (2021)
CrossRef Google scholar
[11]
Qiu,Y., Lopez-Ruiz, J.A., Sanyal,U., Andrews,E., Gutiérrez, O.Y., Holladay,J.D.: Anodic electrocatalytic conversion of carboxylic acids on thin films of RuO2, IrO2, and Pt. Appl. Catal. B 277, 119277 (2020)
CrossRef Google scholar
[12]
Song,F., Bai,L., Moysiadou,A., Lee,S., Hu,C., Liardet,L., Hu, X.: Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J. Am. Chem. Soc. 140(25), 7748–7759 (2018)
CrossRef Google scholar
[13]
Wang,D., Luo,D., Zhang,Y., Zhao, Y., Zhou,G., Shui,L., Chen,Z., Wang,X.: Deciphering interpenetrated interface of transition metal oxides/phosphates from atomic level for reliable Li/S electrocatalytic behavior. Nano Energy 81, 105602 (2021)
CrossRef Google scholar
[14]
Cai,Z., Bu,X., Wang,P., Ho, J.C., Yang,J., Wang,X.: Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A Mater. Energy Sustain. 7(10), 5069–5089 (2019)
CrossRef Google scholar
[15]
Yu,M., Zhou,S., Wang,Z., Zhao, J., Qiu,J.: Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy 44, 181–190 (2018)
CrossRef Google scholar
[16]
Feng,W., Pang,W., Xu,Y., Guo, A., Gao,X., Qiu,X., Chen,W.: Transition metal selenides for electrocatalytic hydrogen evolution reaction. ChemElectroChem 7(1), 31–54 (2019)
CrossRef Google scholar
[17]
Peng,X., Yan,Y., Jin,X., Huang, C., Jin,W., Gao,B., Chu,P.K.: Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 78, 105234 (2020)
CrossRef Google scholar
[18]
Qi,J., Lin,Y.P., Chen,D., Zhou, T., Zhang,W., Cao,R.: Autologous cobalt phosphates with modulated coordination sites for electrocatalytic water oxidation. Angew Chem. Int. Ed. 59(23), 8917–8921 (2020)
CrossRef Google scholar
[19]
Xu,Y., Wang,R., Zheng,Y., Zhang, L., Jiao,T., Peng,Q., Liu,Z.: Facile preparation of self-assembled Ni/Co phosphates composite spheres with highly efficient HER electrocatalytic performances. Appl Surf Sci 509, 145383 (2020)
CrossRef Google scholar
[20]
Zhao,S.Y., Zhang,B., Su,H., Zhang, J.J., Li,X.H., Wang,K.X., Chen,J.S., Wei,X., Feng, P.: Enhanced oxygen electroreduction over nitrogen-free carbon nanotube-supported CuFeO2 nanoparticles. J. Mater. Chem. A Mater. Energy Sustain. 6(10), 4331–4336 (2018)
CrossRef Google scholar
[21]
Du,Z., Qian,J., Bai,J., Li, H., Wang,M., Zhao,X., Xiong,D.: Surfactant-modified hydrothermal synthesis of Ca-doped CuCoO2 nanosheets with abundant active sites for enhanced electrocatalytic oxygen evolution. Inorg. Chem. 59(14), 9889–9899 (2020)
CrossRef Google scholar
[22]
Du,Z., Xiong,D., Verma,S.K., Liu, B., Zhao,X., Liu,L., Li,H.: A low temperature hydrothermal synthesis of delafossite CuCoO2 as an efficient electrocatalyst for the oxygen evolution reaction in alkaline solutions. Inorg. Chem. Front. 5(1), 183–188 (2018)
CrossRef Google scholar
[23]
Xiong,D., Du,Z., Li,H., Xu, J., Li,J., Zhao,X., Liu,L.: Polyvinylpyrrolidone-assisted hydrothermal synthesis of CuCoO2 nanoplates with enhanced oxygen evolution reaction performance. ACS Sustain. Chem. Eng. 7(1), 1493–1501 (2019)
CrossRef Google scholar
[24]
Mao,L., Mohan,S., Mao,Y.: Delafossite CuMnO2 as an efficient bifunctional oxygen and hydrogen evolution reaction electrocatalyst for water splitting. J. Electrochem. Soc. 166(6), H233–H242 (2019)
CrossRef Google scholar
[25]
Zhang,R., Sun,Z., Zong,C., Lin, Z., Huang,H., Yang,K., Chen,J., Liu,S., Huang, M., Yang,Y., Zhang,W., Chen,Q.: Increase of Co 3D projected electronic density of states in AgCoO2 enabled an efficient electrocatalyst toward oxygen evolution reaction. Nano Energy 57, 753–760 (2019)
CrossRef Google scholar
[26]
Choi,M., Yagi,S., Ohta,Y., Kido, K., Hayakawa,T.: Estimation of delafossite P-type CuGaO2/ZnO hybrids as semiconductor photocatalyst by controlling particle size. J. Phys. Chem. Solids 150, 109845 (2021)
CrossRef Google scholar
[27]
Muñoz-García,A.B., Caputo,L., Schiavo, E., Baiano,C., Maddalena,P., Pavone, M.: Ab initio study of anchoring groups for CuGaO2 delafossite-based p-type dye sensitized solar cells. Front. Chem. 7, 158 (2019)
CrossRef Google scholar
[28]
Zhao,Q.M., Zhao,Z.Y., Liu,Q.L., Yao, G.Y., Dong,X.D.: Delafossite CuGaO2 as promising visible-light-driven photocatalyst: synthesize, properties, and performances. J. Phys. D Appl. Phys. 53(13), 135102 (2020)
CrossRef Google scholar
[29]
Ahmed,J., Mao,Y.: Synthesis, characterization and electrocatalytic properties of delafossite CuGaO2. J. Solid State Chem. 242, 77–85 (2016)
CrossRef Google scholar
[30]
Ahmed,J., Poltavets, V.V., Prakash,J., Alshehri,S.M., Ahamad, T.: Sol-gel synthesis, structural characterization and bifunctional catalytic activity of nanocrystalline delafossite CuGaO2 particles. J. Alloy. Compd. 688, 1157–1161 (2016)
CrossRef Google scholar
[31]
Xiong,D., Zeng,X., Zhang,W., Wang, H., Zhao,X., Chen,W., Cheng,Y.B.: Synthesis and characterization of CuAlO2 and AgAlO2 delafossite oxides through low-temperature hydrothermal methods. Inorg. Chem. 53(8), 4106–4116 (2014)
CrossRef Google scholar
[32]
Xiong,D., Zhang,W., Zeng,X., Xu, Z., Chen,W., Cui,J., Wang,M., Sun,L., Cheng, Y.B.: Enhanced performance of p-type dyesensitized solar cells based on ultrasmall Mg-doped CuCrO2 nanocrystals. Chemsuschem 6(8), 1432–1437 (2013)
CrossRef Google scholar
[33]
Xiong,D., Xu,Z., Zeng,X., Zhang, W., Chen,W., Xu,X., Wang,M., Cheng,Y.B.: Hydrothermal synthesis of ultrasmall CuCrO2 nanocrystal alternatives to NiO nanoparticles in efficient p-type dye-sensitized solar cells. J. Mater. Chem. 22(47), 24760–24768 (2012)
CrossRef Google scholar
[34]
Xiong,D., Qi,Y., Li,X., Liu, X., Tao,H., Chen,W., Zhao,X.: Hydrothermal synthesis of delafossite CuFeO2 crystals at 100°C. RSC Adv. 5(61), 49280–49286 (2015)
CrossRef Google scholar
[35]
Xiong,D., Zhang,Q., Verma,S.K., Bao, X.Q., Li,H., Zhao,X.: Crystal structural, optical properties and Mott-Schottky plots of p-type Ca doped CuFeO2 nanoplates. Mater. Res. Bull. 83, 141– 147 (2016)
CrossRef Google scholar
[36]
Xiong,D., Zhang,Q., Du,Z., Verma, S.K., Li,H., Zhao,X.: Low temperature hydrothermal synthesis mechanism and thermal stability of p-type CuMnO2 nanocrystals. New J. Chem. 40(7), 6498–6504 (2016)
CrossRef Google scholar
[37]
Xiong,D., Gao,H., Deng,Y., Qi, Y., Du,Z., Zeng,X., Li,H.: Impact of Mg doping on the optical and electrical properties of p-type CuMnO2 ultrathin nanosheets. J. Mater. Sci.: Mater. Electron. 31(7), 5416–5452 (2020)
CrossRef Google scholar
[38]
Deng,Y., Xiong,D., Gao,H., Wu, J., Verma,S.K., Liu,B., Zhao,X.: Hydrothermal synthesis of delafossite CuScO2 hexagonal plates as an electrocatalyst for the alkaline oxygen evolution reaction. Dalton Trans. (Cambridge, England) 49(11), 3519–3524 (2020)
CrossRef Google scholar
[39]
Du,Z., Xiong,D., Qian,J., Zhang, T., Bai,J., Fang,D., Li,H.: Investigation of the structural, optical and electrical properties of Ca2+ doped CuCoO2 nanosheets. Dalton Trans. (Cambridge, England) 48(36), 13753–13759 (2019)
CrossRef Google scholar
[40]
Du,Z., Qian,J., Zhang,T., Ji, C., Wu,J., Li,H., Xiong,D.: Solvothermal synthesis of CuCoO2 nanoplates using zeolitic imidazolate framework-67 (ZIF-67) as a Co-derived precursor. New J. Chem. 43(38), 15233–15239 (2019)
CrossRef Google scholar
[41]
Gao,H., Zeng,X., Guo,Q., Yang, Z., Deng,Y., Li,H., Xiong,D.: P-type transparent conducting characteristics of delafossite Ca doped CuScO2 prepared by hydrothermal synthesis. Dalton Trans. (Cambridge, England) 50(15), 5262–5268 (2021)
CrossRef Google scholar
[42]
Li,J.H., Wang,Y.S., Chen,Y.C., Kung, C.W.: Metal-organic frameworks toward electrocatalytic applications. Appl. Sci. (Basel, Switzerland) 9(12), 2427 (2019)
CrossRef Google scholar
[43]
Yu,M., Natu,G., Ji,Z., Wu, Y.: p-Type dye-sensitized solar cells based on delafossite CuGaO2 nanoplates with saturation photovoltages exceeding 460 mV. J. Phys. Chem. Lett. 3(9), 1074–1078 (2012)
CrossRef Google scholar
[44]
Yu,M., Draskovic, T.I., Wu,Y.: Understanding the crystallization mechanism of delafossite CuGaO2 for controlled hydrothermal synthesis of nanoparticles and nanoplates. Inorg. Chem. 53(11), 5845–5851 (2014)
CrossRef Google scholar
[45]
Qiao,X., Jin,J., Luo,J., Fan, H., Cui,L., Wang,W., Liu,D., Liao,S.: In-situ formation of N doped hollow graphene nanospheres/CNTs architecture with encapsulated Fe3C@C nanoparticles as efficient bifunctional oxygen electrocatalysts. J. Alloy. Compd. 828, 154238 (2020)
CrossRef Google scholar
[46]
Xu,S., Wang,M., Saranya,G., Chen, N., Zhang,L., He,Y., Wu,L., Gong,Y., Yao, Z., Wang,G., Wang,Z., Zhao,S., Tang,H., Chen, M., Gou,H.: Pressure-driven catalyst synthesis of Codoped Fe3C@ carbon nano-onions for efficient oxygen evolution reaction. Appl. Catal. B 268, 118385 (2020)
CrossRef Google scholar
[47]
Chiu,T.W., Huang,P.S.: Preparation of delafossite CuFeO2 coral-like powder using a self-combustion glycine nitrate process. Ceram. Int. 39, S575–S578 (2013)
CrossRef Google scholar
[48]
Zou,L., Kitta,M., Hong,J., Suenaga, K., Tsumori,N., Liu,Z., Xu,Q.: Fabrication of a spherical superstructure of carbon nanorods. Adv. Mater. 31(24), e1900440 (2019)
CrossRef Google scholar
[49]
Zhao,R.D., Zhang,Y.M., Liu,Q.L., Zhao, Z.Y.: Effects of the preparation process on the photocatalytic performance of delafossite CuCrO2. Inorg. Chem. 59(22), 16679–16689 (2020)
CrossRef Google scholar
[50]
Xin,S., Liu,G., Ma,X., Gong, J., Ma,B., Yan,Q., Chen,Q., Ma,D., Zhang, G., Gao,M., Xin,Y.: High efficiency heterogeneous fenton-like catalyst biochar modified CuFeO2 for the degradation of tetracycline: economical synthesis, catalytic performance and mechanism. Appl. Catal. B 280, 119386 (2021)
CrossRef Google scholar
[51]
Li,T., Xu,M., Peng,K., Sun, Y., Wang,M., Dai,H., Liu,D., Xue,R., Chen, Z.: Evolution of microstructure, defect, optoelectronic and magnetic properties of Cu1-xCaxFeO2 ceramics. J. Phys. Chem. Solids 151, 109910 (2021)
CrossRef Google scholar
[52]
Bourque,J.L., Biesinger, M.C., Baines,K.M.: Chemical state determination of molecular gallium compounds using XPS. Dalton Trans. (Cambridge, England) 45(18), 7678–7696 (2016)
CrossRef Google scholar
[53]
Sarpaki,S., Cortezon-Tamarit, F., de Aguiar,S.R.M.M., Exner,R.M., Divall, D., Arrowsmith,R.L., Ge,H., Palomares, F.J., Carroll,L., Calatayud,D.G., Paisey, S.J., Aboagye,E.O., Pascu,S.I.: Radio- and nano-chemistry of aqueous Ga(iii) ions anchored onto graphene oxide-modified complexes. Nanoscale 12(12), 6603–6608 (2020)
CrossRef Google scholar
[54]
Huang,R., Liu,T., Zhao,Y., Zhu, Y., Huang,Z., Li,F., Liu,J., Zhang,L., Zhang, S., Ding,A., Yang,H.: Angular dependent XPS study of surface band bending on Ga-polar N-GaN. Appl. Surf. Sci. 440, 637–642 (2018)
CrossRef Google scholar
[55]
Grodzicki,M., Rousset, J.G., Ciechanowicz,P., Piskorska-Hommel,E., Hommel, D.: XPS studies on the role of arsenic incorporated into GaN. Vacuum 167, 73–76 (2019)
CrossRef Google scholar
[56]
Wang,Z., Xu,J., Yang,J., Xue, Y., Dai,L.: Ultraviolet/ozone treatment for boosting OER activity of MOF nanoneedle arrays. Chem. Eng. J. 427, 131498 (2022)
CrossRef Google scholar
[57]
Saad,A., Liu,D., Wu,Y., Song, Z., Li,Y., Najam,T., Zong,K., Tsiakaras,P., Cai,X.: Ag nanoparticles modified crumpled borophene supported Co3O4 catalyst showing superior oxygen evolution reaction (OER) performance. Appl. Catal. B 298, 120529 (2021)
CrossRef Google scholar
[58]
Li,H., Tan,M., Huang,C., Luo, W., Yin,S.F., Yang,W.: Co2(OH)3Cl and MOF mediated synthesis of porous Co3O4/ NC nanosheets for efficient OER catalysis. Appl. Surf. Sci. 542, 148739 (2021)
CrossRef Google scholar
[59]
Kang,T., Kim,J.: Optimal cobalt-based catalyst containing high-ratio of oxygen vacancy synthesized from metal-organic-framework (MOF) for oxygen evolution reaction (OER) enhancement. Appl. Surf. Sci. 560, 150035 (2021)
CrossRef Google scholar
[60]
Li,X., You,S., Du,J., Dai, Y., Chen,H., Cai,Z., Ren,N., Zou,J.: ZIF-67-derived Co3O4@ carbon protected by oxygen-buffering CeO2 as an efficient catalyst for boosting oxygen reduction/evolution reactions. J. Mater. Chem. A Mater. Energy Sustain. 7(45), 25853–25864 (2019)
CrossRef Google scholar
[61]
Bhatti,A., Tahira, A., Gradone,A., Mazzaro,R., Morandi, V., Aftab,U., Abro,M.I., Nafady, A., Qi,K., Infantes-Molina,A., Vomiero, A., Lbupoto,Z.H.: Nanostructured Co3O4 electrocatalyst for OER: the role of organic polyelectrolytes as soft templates. Electrochim. Acta 398, 139338 (2021)
CrossRef Google scholar
[62]
Bian,J., Su,R., Yao,Y., Wang, J., Zhou,J., Li,F., Wang,Z.L., Sun,C.: Mg doped perovskite LaNiO3 nanofibers as an efficient bifunctional catalyst for rechargeable zinc–air batteries. ACS Appl. Energy Mater. 2(1), 923–931 (2019)
CrossRef Google scholar
[63]
Dai,J., Zhu,Y., Zhong,Y., Miao, J., Lin,B., Zhou,W., Shao,Z.: Enabling high and stable electrocatalytic activity of iron-based perovskite oxides for water splitting by combined bulk doping and morphology designing. Adv. Mater. Interfaces 6(1), 1801317 (2019)
CrossRef Google scholar
[64]
Zhang,X., Chen,Y., Zhang,W., Yang, D.: Coral-like hierarchical architecture self-assembled by cobalt hexacyanoferrate nanocrystals and N-doped carbon nanoplatelets as efficient electrocatalyst for oxygen evolution reaction. J. Colloid Interface Sci. 558, 190–199 (2020)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022
AI Summary AI Mindmap
PDF(2230 KB)

Accesses

Citations

Detail

Sections
Recommended

/